
OWNERS MANUAL 

Manufactured 
by 

CHINON INDUSTRIES, INC, 
in 

Japan 

Exclusively for 
" THE COMTEl GROUP, INC," 



BONUS DISK INSTRUCTION 
Thi s program will allow you to check your Oo ppy disk drive for the Commodore. It will a llow you to check the DRIVE 
mechani sm the READ electronics the WRITE electronics as we ll as FORMA TTING. To load the Bonus disk simply insen 
the Ooppy int o your disk dri ve and type: 

Load "$" . 8 then hit Ret urn (C R) 
o nce loaded. type: Lis!. then Return . this will li st the directory. Once the directory has listed. to run the TEST program 
simpl y type : 

Load" test". 8 and hit Return. 
Once program has loaded type RUN . Pl ease read the screen carefully . Remove the BONUS dis k and in sen a BLANK 
SCRA T CH di sk I CAUTION: If th e Bonus Di sk is not rem oved and rep laced wi th a BLANK SCRATCH Diske tte . the 
BONUS Disk will be DESTROYED . I and hit RETURN. 

The program will now go thru its di agnostics checking the dri ve. read and write electronics. Once th e diagnos tics have 
r,nished the program wi ll e ither give you a PASS o r FAIL rating. Should the lInit FAIL pleasc co ntact you r dealer or The 
Comtel G roup a t te lepho ne Number 714-95 3-6165. 

LIMITED ONE YEAR WARRANTY 

"T IU: COM rrLGROUP" \V,1 rrMls 1(, Ihe or iginal consume r rurChMcr that ils FNFfAN<. 'I' R .'f)()() DISK 
DRI vr for C f)mmooorc comr ll1cr !' c; h~1I he fr cc from Rny dcfcC1 in m"'l cri nl An d workmftn ~ hip r" l ;1 pcr i~ ' cI ,.,1 
O N E YEA R (r(lm [he dale of run: hR sc. If \.\ ithin Ihis pcrirx1 a defe ct CC'I\'c rcd by (his W:'lrr :1I11\' n ... T\I '.~. lil (' 
F.N f I " NCr R 2000 DISK DR I VF. unit c; h(lu ld he rClumcd within this period to the plffee of rur l"h~<;l! or wnl net 
"THE rOMTEL GROUP" for rcpnir ;nfClmlnlinn. 

nIP. rO MT[L GROUP. INC 
P. O. BOX t 54R5 

s,"t. IInR. C II 9210 ~ USII 
Phone (114 ) 953-6165 

TillS WARRIINT Y IS CONTIN GENT UPON TIl E FOLLO WIN (; 
CONJ)ITlONS' 

T he WArT;.nl )' card mu~ 1 he cnmplcled Met mA iled In" THE COMTEL G ROU P" by the ori,l!in.'ll c()n~umcr 
pUfchll "cr wit hin fiOeen (15) dRY " nf the origin:11 purcha<:;c date. 

2. If the produ ct i~ 1('1 be returned 10 " TI If' COMTT:.L G ROUP" for '-":lrreml)' service an( (( RM;\))) nll tllt--cr 

must be 0h tilincd fwm our SCT"\'icc dCpFtrlmCnl JIll" THE COM fEL GROUP" prior to relurni1lp. the prod llct . 
3. Th e rur c h ~t ~cr "hall prcplly shirring chArges 10" TlfE COMTFL GROUP" and ..... ill accept " COD retum 
chArge when submilling Any equipment for wnrranty se rvice. 
4. Pn")('J( ('I f purchnse will he rcqu~rcd upo n suhmiss inn of equipment (or warrent)' serv ice 
5. The pUTC' hll SCr must describe in writing the sympl(lms of the defective DI S K DRI VE whe n ,,"pmiHcd (o r 
warT;mC y se rvi ce. 

NOTE.:' 
( A) Any DISK DRIVE retumedlo" TlfE. COM rr:.LGROUP ·· which is olll ofwflrntnc y will he c;lIhjeel lo;") Oal 
ralC e hflri!-c for <;ervice. The repair rale rna )' be oht Ained fw m the service department al" Til F COMTEL 
GROUP 
(8) Thi" wnrrflnty is: v(lid if the serinl number hfl s t"lcen ",lIered. defnced ()r rem oved. 
Thi c; wflr ran l), ~ill cs Y(l U speci ric legal right c;. (Ind you m", y al so have (lther right,; which vary fr (l ln <.: 1.1t (' In <; 1;l1C'. 
The rrc"l\" i ~i() n ~ or this warrflnty shllll not arrl)' 1(1 M E nhancer f)j~c Drive which has been '\u hj ecl In rni<;l1~ c. 
negligen ce. occident or allerllti(ln. 



Table of Contents Page 

1. Introduction ........................................................................................ ..... 1 

2. Specifications .......................................................................................... 2 

3 Installation .............................................................................................. 4 
Box Contents .... ................................................................ ... ............. 4 
Cable Connections ............................................................................ 4 
Turning on the Power ........................................................ .............. 4 
Disk Insertion .................................................................................. 4 

4. Using Programs....................................................................................... 5 
Using Prepackaged Software ............................................................ 5 
LOAD Command ............................................................................. 5 
The Disk Directory ........................................................................... 6 
Pattern Matching and Wild Cards .................................................... 7 
SAVE ............................................................................................... 7 
SAVE AND REPLACE ................................................................... 8 
VERIFy ........................................................................................... 8 

5. Disk Commands ...................................................................................... 9 
OPEN .............................................................................................. 9 
PRINT # ......................................................................................... 9 
INITIALIZE .................................................................................... 10 
NEW ................................................................................................ 10 
SCRATCH ....................................................................................... 1 1 
COPY .............................................................................................. 11 
RENAME ........................................................................................ 12 
VALIDATE ..................................................................................... 12 
Reading the Error Channel ............................................................... 13 
CLOSE ............................................................................................ 13 

6. Sequential Files ...................................................................................... 14 
OPEN .............................................................................................. 14 
PRINT # ......................................................................................... 15 
GET # ............................................................................................. 16 
INPUT # ........................................................................................ 17 



7. Random Files ........................................................................................... 18 
OPEN .............................................................................................. 18 
BLOCK-READ ................................................................................ 19 
BLOCK-WRITE .............................................................................. 19 
BLOCK-ALLOCATE ...................................................................... 20 
BLOCK-FREE ................................................................................. 21 
BUFFER-POINTER ....................................................................... 22 
Using Random Files ......................................................................... 22 
USER 1 ............................................................................................ 24 
USER 2 ............................................................................................ 25 

8. Relative Files ........................................................................................... 26 
Relative File Format ......................................................................... 26 
Using Relative Files .......................................................................... 27 
POSITION ...................................................................................... 27 

9. Programming the Disk Controller ........................................................... 30 
MEMORy-WRITE ......................................................................... 30 
MEMORY-READ ........................................................................... 31 
MEMORy-EXECUTE .................................................................... 32 
USER Commands ............................................................................ 32 

10. Changing the Device Number .................................................................. 33 
Software Method .............................................................................. 33 
Hardware Method ............................................................................ 34 

Appendices 
A. List of Commands ............................................................................. 35 
B. Description of Error Messages ......................................................... 36 

11 



1. INTRODUCTION 

The Enhancer 2000 Disk Drive is a versatile and efficient disk drive built 
for the Commodore series of personal computers. This drive is fully compatible 
with the Commodore 64 computer and directly replaces the Commodore 1541 
Disk Drive, giving much better performance in terms of data loading and writing 
speed and memory buffer size. 

If you are a beginner, the first few chapters will help you install and operate 
the disk drive. As your skill and experience improves, you will find more uses for 
your disk drive and the more advanced chapters will be very helpful. 

If you're an experienced professional, this manual can give you the informa
tion you need to take advantage of all the power and features. 

Regardless of the level of your programming expertise, the Enhancer 2000 
will greatly increase the efficiency and capability of your computer system. 

Please be aware that this manual is a reference guide to the operation of the 
Enhancer 2000. While it contains step by step instructions and a section to let 
you easily use prepackaged software, you should become familiar with BASIC 
and the computer commands that help you operate your computer and its peri
pherals. 

Remember, you don't need to learn everything in this manual at once. The 
first three or four chapters will let you use the disk drive for most applications, 
and the following chapters tell you how to set up files, access any data, and pro
gram the disk drive itself at the machine language level. 

NOTES: In FORMAT examples, lower case words need to be replaced by 
an appropriate word or number that you choose. 

In this manual, zeroes look like this: 0; and the letter "oh" looks like this: 
oorO. 



2. SPECIFICATIONS 

ENHANCER 2000 FLOPPY DISK DRIVE 

*Slim line construction (low profile) and fully Commodore compatible direct 
drive. 

*Disk size: 5-1/4 inch diameter. 

*Capacity 
Per Disk .......................................... 174.8 k bytes 
Directory Entries ............................ 144/disk 
Sector/Track ................................... 21 
Bytes/Sector .................................... 256 
Tracks............................................. 35 

* Average MTBF rate of 10,000 hours. 

*Power Requirements 
External 

*Unit Dimensions 
Height, width, depth ....... ................ 2-3/4", 7-1/3", 1 0" 
Weight ............................................ 5 Ibs 

*Dual serial port with chaining option. 

*5-114 inch industry standard format. 

*Direct drive mechanism. 

2 



COMPONENT DIAGRAM 

( 

1 

\ 
\. 

LOCK + EJECT MECHANISM 

\ 

~ 

II 
IT 

II 

DUAL SERIAL 
PORTS 

DRIVE INDICATOR 

""\ 
II Icbll 

I 

) 
.1 

11 ) 
IIIE~" P'S" 11/ 

= 

ERROR INDICATOR POWER INDICATOR 

off on 

POWER SWITCH 

POWER SOCKET 

3 



3. INST ALLA TION 

Turn All Power OFF 

BOX CONTENTS 

The Enhancer 2000 Disk Drive consists of the disk drive, warranty card, 
bonus disk, power supply, serial bus cable, and this manual. The power supply 
has a connection for the back of the disk drive on one end, and a connection for a 
three-prong electrical outlet on the other end. The serial bus cable has a six-pin 
DIN plug on both ends. 

CABLE CONNECTIONS 

First, plug the power cable into the back of the disk drive. It won't go in if 
you try to put it in upside down. Next, plug the other end into the electrical out
let. If the drive makes any sound at this time, turn it off using the switch on the 
back! Do not plug any other cables into the drive with the power on. 

Second, plug the serial bus cable into either one of the serial bus sockets on 
the back of the drive. Turn off the computer and plug the other end of the cable 
into the back of the computer. You're ready to go! 

If you have a printer or another disk drive, attach its cable to the remaining 
serial bus socket to "daisy chain" the devices. Ifit's a disk drive, you will need to 
change one of the drives device numbers. This is explained further on in the 
manual. 

TURNING ON THE POWER 

When all the devices are hooked together, the power may be turned on. It is 
important to turn them on in the correct order: the computer is always last. 
Also: make sure there are no disks in the disk drive when you turn on the power. 
(See attached notice.) 

DISK INSERTION 

To insert a disk, squeeze the gate and release to the open position, then 
squeeze the gate closed until you hear a clicking sound. (The gate will latch 
closed.) The disk goes in face up, with the large opening going in first and the 
write-protect notch (a small square cutout in the disk) on the left. 

Never remove a disk when the drive light is on! And remember, always re
move the disk before the drive is turned on or om Data can be destroyed by the 
drive at this time! 

4 



4. USING PROGRAMS 

USING PREPACKAGED SOFfWARE 

If you want to use a program already written on a disk, such as a video game, 
here's all you have to do. 

Insert the preprogrammed disk so the label on the disk is facing up and clo
sest to you. There should be a little notch on the disk (maybe covered with tape) 
that should be on the left. Now, type in LOAD "program name" and hit the RE
TURN key. The disk drive will RUN and your screen will say: 

SEARCHING FOR PROGRAM NAME 
LOADING 
READY 

When the screen says READY, just type in RUN and hit the RETURN key 
-- your program is ready to use! 

LOAD COMMAND 

PURPOSE: 
To transfer a program from the disk to the computer's current memory. 

FORMAT: 
LOAD "program Name", device #, command # 

The program name is a character string, that is, either a name in quotes or 
the contents of a given string variable. The device number is preset on the disk 
drive's circuit board to be 8. If you have more than one drive, read the chapter on 
changing the device number for the disk drive. 

The command number is optional. If not given, or zero, the program is load
ed normally, into the start of your computer's available memory for BASIC pro
grams. If the number is 1, the program will be loaded into exactly the same me
mory locations from which it came. The command number 1 is used mainly for 
machine language, character sets, and other memory dependent functions. 

EXAMPLES: 

LOAD "TEST", 8 

LOAD "Program # 1", 8 

LOAD "Mach Lang", 8, 1 

LOADA$,J, K 

5 



CAUTION: Besides putting your program into the computer's current me
mory, LOAD wipes out any previous program there! 

NOTE: As in the last example, you can use variables to represent strings, 
device numbers, and command numbers; just be sure they are all previous
ly defined in your program. Also, see the note on file names on page 8. 

THE DISK DIRECTORY 

Your disk drive is a random access device. This means the read/write head 
of the drive can go to any spot on the disk and access a single block of data, which 
hold up to 256 bytes of information. There are 683 blocks on a disk. 

Fortunately, you don't have to worry about individual blocks of data (check 
chapter 5 if you do). There is a program in the disk drive called the Disk Operat
ing System, or dos, that keeps track of the blocks for you. It organizes them into a 
Block Availibility Map, or BAM, and a directory. The BAM is simply a check
list of the blocks, and is updated every time a program is SAVEd or a data file 
OPENed. 

The directory is a list of all programs and other files stored on the disk. 
There are 144 entries available, consisting of information like fi 1 e name and 
type, a list of blocks used, and the starting block. Like the BAM, the directory is 
updated each time a program is SAVEd or a file OPENed. However, the BAM 
isn't updated until the file is CLOSEd. If not CLOSEd properly, all data in that 
file will be lost. More on this later. 

The directory can be LOADed into your computer memory just like a BA
SIC program. Put the disk in the drive and type: 

LOAD "$", 8 

The computer will say: 

SEARCHING FOR $ 

FOUND $ 

LOADING 

READY 

Now the directory is in current memory, and if you type LIST it will be dis
played on the screen. To examine the directory from inside a BASIC program, 
see chapter 6 concerning the GET # statement. 

6 



PATTERN MATCHING AND WILD CARDS 

To make LOADing easier, pattern matching lets you specify certain letters in 
the program name so the first program in the disk that matches your pattern is 
the one loaded. 

EXAMPLES: 

LOAD "*", 8 (LOADs first file on disk) 

LOAD "TE*", 8 (LOADs first file that starts with TE) 

LOAD "TE?T', 8 (LOADs first file that has four letters and begins with TE) 

LOAD "T?NT", 8 (LOADs first file that has four letters but could be TINT, 
TENT, et cetera) 

The asterisk (*) tells the computer not to worry about the rest of the name 
while the question mark (?) acts as a wild card. 

The above can also be used when LOADing the directory into current me
mory. This allows checking for a list of specific programs. The procedure is the 
same as above except for the addition of a "$:": 

EXAMPLE: 

LOAD "$:T?ST*", 8 (LOADs all file names in the directory that have the 
correct first, third, and fourth letters) 

SAVE 

PURPOSE: 

Transfer a program in current memory onto the disk for later use. 

FORMAT: 

SA VE "program name", device #, command # 

As before, the command number is optional. If there is already a program or 
file by the same name on the disk or there isn't enough room on the disk, an error 
signal will be generated. If there isn't enough room, other programs will have to 
be erased or used a different disk. 

EXAMPLE: 

SA VE "HOMEWORK", 8 

7 



SA VE AND REPLACE 

PURPOSE: 

Replace an already existing file with a revised version. 

FORMAT: 

SAVE "@ O:program name", 8 

If you edit an existing program and want to save it under the same name, 
SA VE AND REPLACE does so automatically. If you want to keep the old ver
sion, save the new version under a different name. 

EXAMPLE: 

SAVE:@ O:HOMEWORK",8 

VERIFY 

PURPOSE: 
Checks current program with one on the disk. 

FORMAT: 
VERIFY "program name", device #, command # 

VERIFY does a byte by byte comparison of the program in current memory 
with one on the disk, as specified in the VERIFY command. 

EXAMPLE: 

VERIFY "OLD VERSION", 8 

NOTE ABOUT FILE NAMES: File names must begin with a letter not a 
number. Spaces are permitted. While there is no restriction on the length 
of a file name, all commands must be 58 or fewer characters in length. For 
example, in the above VERIFY command, there are 10 characters besides 
the actual program name, so the maximum name length, in this case, is 48 
characters. 

8 



5. DISK COMMANDS 

So far, you have learned the simple ways of using the disk drive. In order to 
communicate more fully with the disk, disk commands need to be used. Two of 
these, OPEN and PRINT # , allow the creation and filling of a data file on the 
disk. Just as important is their ability to open a command channel, allowing the 
exchange of information between computer and disk drive. 

OPEN 

PURPOSE: 

Creates a file by OPENing a communication channel between computer and 
disk drive. 

FORMAT: 

OPEN file # , device # , (command) channel # , text string 

The file number should be any number from I to 127. Numbers from 128 to 
255 can be used but should be avoided as they cause the PRINT # statement to 
generate a linefeed after carriage returns. The device number is usually 8. 

The channel number can be any number from 2 to 15. These refer to chan
nels used to communicate with the disk, and channels 0 and I are used by the 
operating system for LOADing and SA VEing. Channels 2 through 14 can be 
used to send data to files while 15 is reserved as the command channel. 

The text string is a character string that is used as the name for the file creat
ed. A file cannot be created unless the file name is specified in the text string. If 
you attempt to open a file already opened, the error signal "FILE OPEN ER
ROR" will be generated. 

EXAMPLES: 

OPEN 5,8,5 "TEST" (creates a file called TEST) 

OPEN 15,8, 15," I "(sends command to disk on command channel) 

OPEN A,B,C,Z$ (these variables must be defined) 

PRINT # 

PURPOSE: 

Fills a previously OPENed file with data. 

9 



FORMAT: 

PRINT # file #, text string 

The PRINT # command works exactly like the PRINT command, except 
the data goes to a device other than the screen, in this case the disk drive. When 
used with a data channel, PRINT # sends information to a buffer in the disk 
drive which then LOADs it onto the disk. When used with a command channel, 
PRINT # sends commands to the disk drive. The command is placed inside 
quotes as a text string. 

EXAMPLES: 

PRINT # 7, C$ (fills file 7 with text string C$) 

PRINT # 15," I " (sends disk command on command channel) 

INITIALIZE 

PURPOSE: 

Initializes disk driver to power up condition. 

FORMAT: 

OPEN 15,8,15," I" or 

OPEN 15,8,15: PRINT # 15," 1" 

Sometimes, an error condition on the disk will prevent you from performing 
an operation. INITIALIZE returns the disk drive to its original state when power 
is turned on. 

NEW 

PURPOSE: 

Formats new disk or re-formats used one. 

FORMAT: 

PRINT # 15, "NEW 0: disk name, id #" 

This command formats a new disk. It is also useful to erase an already
formatted disk, as it erases the entire disk, puts timing and block markers on, and 
creates the directory and the BAM. The disk name is for user convenience while 
the id # is a 2 digit alphanumeric identifier that is placed in the directory and 
every block on the disk. If you switch disks while writing data, the drive will 
know by checking the id # . 

10 



EXAMPLES: 

OPEN 15,8, IS, "NEW 0: TEST DISK, AI" 

OPEN 15,8, IS: PRINT # IS, "NO: MY DISK, MY" 

If the disk needs erasing but not reformatting, the same command is used, but 
leave out the id # . 

EXAMPLE: 

OPEN 15,8, 15, "N 0: NEW INFO" 

SCRATCH 

PURPOSE: 

Erase a file or files from the disk. 

FORMAT: 

PRINT # IS, "SCRATCH 0: filename" 

This command erases one or more files from the disk, making room for new 
or longer files. Groups of files can be erased at one time by naming all of them in 
one scratch command. 

EXAMPLES: 

PRINT # 15,"S.0: TEXT" (erases file called TEXT) 

PRINT # IS, "SCRATCH 0: TEXT, 0: TEST, 0: MUSIC" 
(erases files TEXT, TEST, and MUSIC) 

COpy 

PURPOSE: 

Duplicate an existing file. 

FORMAT: 

PRINT # IS, "COPY 0: newfilename = 0: oldfilename" 

COpy allows you to make a copy of any program or file on the disk. The 
new file's name must be different from the old one. COpy can also combine up 
to four files into one new one. 

II 



EXAMPLES: 

PRINT # 15, "C 0: BACKUP = 0: ORIGINAL" 

PRINT # 15, "COpy 0 :NEWFILE=O: OLDI,O :OLD2,0" 
(combines OLDI and OLD2 into NEWFILE) 

RENAME 

PURPOSE: 

Change the name of existing file. 

FORMAT: 

PRINT # 15, "RENAME 0: newname = 0: old name" 

This command lets you change the name of a file once it's in the disk direc
tory. RENAME will not work on any files that are currently open. 

EXAMPLE: 

PRINT # 15, "R 0 :GOODNAME=O :DUMBNAME" 

VALIDATE 

PURPOSE: 

Removes wasted spaces on disk. 

FORMAT: 

OPEN 15,8,15, "VO:" 

After a disk has had many files saved and erased, small gaps in the data begin 
to accumulate and waste memory space on the disk. VALIDATE reorganizes 
your disk so you can get the most memory from the available space. Also, this 
command removes files that were OPENed but never properly CLOSEd. 

CAUTION! V ALIDA TE erases random files (see chapter 7). If your disk 
contains random files, DO NOT use this command! 

12 



READING THE ERROR CHANNEL 

Withou t the DOS Support Program, there is no way to read the disk error 
channel since you need to use the INPUT # command, unusable outside a pro
gram. Here is a simple BASIC program to read the error channel: 

10 OPEN 15,8,15 

20 INPUT # 15, A$, B$, 0$ 

30 PRINT A$, B$, C$, 0$ 

When you use an INPUT # from the command channel, you read up to four 
variables that describe the error condition. The first, third, and fourth are numb
ers so numeric variables can be used. The inputs are organized as follows: 

First: error number (0 means no error). 
Second: error description. 
Third: track number where error occurred. 
Fourth: block (sector) in track where error occurred. 
Errors on track 18 concern the BAM and directory. 

CLOSE 

PURPOSE: 

Proper allocation of OAT A BLOCKS, CLOSES ENTRY. 

FORMAT: 

CLOSE file # 

This command is very important. Once a file that was opened is no longer 
needed for data entry, IT MUST BE CLOSED OR ELSE ALL DATA IN THAT 
FILE WILL BE LOST. 

It is very important that the data files be CLOSEd before the error channel 
(channel # 15) is CLOSEd. Otherwise, the disk drive will CLOSE them for you 
but BASIC will still think they are open and let you try to write to them. The er
ror channel should be OPENed first and CLOSEd last of all your files. 

NOTE: If your BASIC program leads to an error condition, all files are 
CLOSEd in BASIC, but not on the disk drive. This is VERY DANGER
OUS! Immediately type: 
CLOSE 15: OPEN 15,8,15: CLOSE 15 
This will re-initialize your drive and make all your files safe. 

13 



6. SEQUENTIAL FILES 

Sequential files are stored and read sequentially from beginning to end. 
There are basically three different types of sequential files that can be used. The 
first is the program file, which is abbreviated in the directory as PRG. The PRG 
is the only sequential file that can store and read programs. The second file, se
quential (SEQ), and the third file, user (USR), are for data handling. These two 
files must be opened just like the command channel in the last chapter. 

OPEN 

PURPOSE: 

Open a sequential file. 

FORMAT: 

OPEN file #, device #, channel #, "0: name, type, direction" 

The file number is the same as in previous uses of the OPEN command, the 
device number is usually 8, the channel number is a data channel, 2 through 14. 
It's a good idea to use the same number for both file and channel numbers, for 
easy remembering (you may have noticed this in previous examples). 

The name is the file name, for which no wild cards or pattern matching may 
be used if you're creating a write file. The type can be anyone from the list be
low, or at lease the first letter of one. The direction must be READ or WRITE, 
or at lease their first letters. 

FILE TYPE MEANING 

PRG Program file 

SEQ Sequential file 

USR User file 

REL Relative (not implemented in BASIC 2.0) 

EXAMPLES: 

OPEN 5, 8, 5, "0: DATA, S, R" 

OPEN A, B, C,"O:TEXT, P, W" 

OPEN A, B, C, "0:" + "U, W" (OPENs a write file with a name specified by 
the string variable A$) 

14 



OPEN 2, 8,2 "@ 0: PHONES, S, W" (replaces old version of the file with a 
new one) 

Once a file has been opened for reading or writing, three commands can be 
used to actually transfer the data. These commands are PRINT #, INPU T #, 
and GET #. 

PRINT # 

PURPOSE: 

Directs output to previously opened file. 

FORMAT: 

PRINT # file #, data list (no space allowed between PRINT and #) 

The PRINT # statement works exactly like PRINT: formatting capabilities 
for punctuation and data types work just the same. But that means you need to 
be careful when putting data into files. The file number is the one just OPENed 
and the data list consists of variables and/or text inside quotation marks. 

Care must be taken when writing in data so that it is as easy as possible to 
read out later. Commas used to separate items will cause spaces to be stored on 
the disk. Semi-colons will keep spaces from being stored. Ifboth commas and se
mi-colons are absent, a carriage return (CR) will be stored at the end of the data 
that is written in. Consider the following example program: 

10 A$ = "THIS IS A" 
20 BS = "TEST" 
30 OPEN 8, 8, 8, "0: TEST ,S ,W" 
40 PRINT # 8, A$, BS "OF THE DISK" 
50 CLOSE 8 
60 END 

If you could see the data and its position on the disk, it would look like this: 

I~\:\ ~ I: 151: \: \81:1 1TTT 3\ITTTTT 9
\ 

\2°121122123\2412512TT8129130\31\32\33\34135\ 
T EST 0 F THE DIS K CR eof (end of file) 

The comma, semi-colon, and carriage return have special meaning when 
stored to the disk. When used inside a string or quotes, they will be stored as re
gular characters. When used as a separator between fields, the comma inserts 
spaces (usually a waste of memory), the semi-colon doesn't, and the CR stores a 
carriage return on the disk. These are important when you use GET # or IN
PUT # to retrieve the data you stored. 

15 



GET # 

PURPOSE: 

To get data from the disk byte by byte. 

FORMAT: 

GET # file # , variable list 

Data comes in byte by byte, including CR'S, commas, and other separators. 
Generally, it's safer to use character string variables to avoid error messages. 

EXAMPLES: 

GET # 8, A$ 

GET # 5, A (only works for numerical data) 

GET # A, B$, C$, d$ (GETs more than one variable at a time) 

The GET # statement is very useful when the actual data content or struc
ture is not known, such as a file on a disk that has been damaged. If you are fami
liar with the file and there are no problems, INPUT # is more efficient. But to 
look at data in an unfamiliar or damaged file, the following example program will 
read the contents out (in this case, from the file created in the PRINT # example 
program). 

10 OPEN 8, 8, 8, "TEST" 

20 GET# 8, A$: PRINT A$; 

30 IF ST = 0 THEN 20 (ST is a status signal) 

40 CLOSE 8 

50 END 

16 



INPUT # 

PURPOSE: 

Retrieve disk data in groups. 

FORMAT: 

INPUT # file #, variable 

The file number is the same as the one OPENed and the variable can repre
sent character strings or numbers. To read a group of data, separators are needed 
to indicate the start and finish of the group. These are the comma, semi-colon, 
and CR, and work as explained in the section on the PRINT # command. 
Numbers are stored with a space in front of them, which is empty for positive 
numbers and contains a negative sign for negative numbers. Here's a sample pro
gram: 

10 OPEN 8, 8, 8:'@ 0: DAT AFlLE, S, W" 
20 FORA=L TO 10 
30 PRINT # 8, A 
40 NEXT A 
50 CLOSE 8 
60 OPEN 2,8, 2,:"DAT AFILE" 
70 INPUT # 2, B :PRINT B 
80 IF ST =0 THEN 70 
90 CLOSE 2 

100 END 

This example program will write the numbers I through 10 to a sequential 
file called DA T AFILE. Lines 70 and 80 will read the data from the disk and 
print it out. See page 22 for two useful sample programs. 

17 



7. RANDOM FILES 

Sequential files are fine when you're just working with a continuous stream 
of data, but some jobs need more flexibility. For example, if you have a large 
mailing list, it would be inconvenient to scan the entire list to find one person's 
address. A random access method would let you pick out the desired data with
out having to read the whole file. 

There are two file types that can do this: random files and relative files. 
Random files are the best choice when speed is a desired factor, as in machine 
language programs. This is because locations of the data are maintained by the 
program when random files are used, while relative file locations are maintained 
by the DOS. The problem is random files are easy to accidentally remove from 
the disk since the DOS doesn't maintain them. 

Random files are files that have been written to a certain physical location on 
the disk. The disk is divided into 35 concentric rings, or tracks, with each track 
containing from 17 to 21 sectors. 

TRACK NUMBER 

1 to 17 
18 to 24 
25 to 30 
31 to 35 

SECTOR RANGE 

o to 20 
o to 18 
o to 17 
o to 16 

TOTAL SECTORS 

21 
19 
18 
17 

It is possible to read and write to any block on the disk, as well as determine 
which blocks are available for use. The following commands explain how to use 
the random file functions. 

OPEN 

PURPOSE: 

OPENs a data channel for random access. 

FORMAT: 

OPEN file #, device #, channel #, .. # " 

When working with random files, you need to have two channels open to the 
disk: the command channel (15) to send commands and a data channel (2 to 14) 
for the data transfer. The data channel for random access files is OPENed by se
lecting the pound sign, .. #", as the file name. 

18 



The additional" #" on the end of the command causes the disk to allocate a 
256 byte buffer for the purpose of handling the desired block of data. If a buffer 
number is specified, the allocated buffer will be the one you specified. 

EXAMPLES: 

OPEN 5, 8, 5, "#" (you don't care which buffer) 

OPEN A, B, C, "#.2" (you specify buffer 2) .pa 

BLOCK-READ 

PURPOSE: 

To read a specific block of data from the disk. 

FORMAT: 

PRINT # file #, "BLOCK-READ:" channel #, drive #, track #, block # 
(BLOCK-READ can be replaced with B-R) 

The file and channel numbers are ones that have been OPENed. The track 
number and block number indicate which 256 byte block is to be read. Executing 
this command causes the disk drive to move the specified block of data into the 
buffer area. The data can then be read from the buffer area using either INPUT 
# or GET #. Only data in that particular block will be read, and any unused 
bytes in the block will not be read. The sample program below uses BLOCK
READ to read the contents of block 9 on track 5 and display the block's contents 
on the screen. 

10 OPEN 15,8, 15 
20 OPEN 8, 8, 8," #" 
30 PRINT # 15, "B-R:" 8,0,5,9 (reads block into buffer) 
40 GET # 8,A$ 
50 PRINT A$; 
60 IF ST =0 THEN 40 
70 PRINT "READ COMPLETE" 
80 CLOSE 8 : CLOSE 15 

BLOCK-WRITE 

PURPOSE: 

Write a block of data to a specified block location on the disk. 

19 



FORMAT: 

PRINT # file #, "BLOCK-WRITE:" drive #, channel #, track #, 
block # 

BLOCK-WRITE can be shortened to B-W. This command causes data pre
viously stored in the buffer to be written to the specified location on the disk. 
The data should be transferred to the buffer on a data channel using PRINT # 
before BLOCK-WRITEing it to the disk. The DOS keeps track of how many 
bytes are stored into the buffer and stores the byte count into the first byte of the 
block when BLOCK-WRITE is executed. This means that only 255 bytes can ac
tually be written to or read from the block, since the byte count uses the first byte 
of the block. Here's an example of a routine that will write data to the same 
block that is read in the BLOCK-READ example above (track 5, block 9): 

10 OPEN 15,8, IS 
20 OPEN 8, 8, 8," # " 
30 FOR AA = I TO 32 
40 PRINT # 8, "TESTING" 
50 NEXT 
60 PRINT # L5,"B-W:" 8,0,5,9 
70 CLOSE8: CLOSE IS 

BLOCK-ALLOCATE 

PURPOSE: 

Determine if a particular block is free and allocate it if so. 

FORMAT: 

PRINT # 15,"B-A:" channel #, drive #, track #, block # 

As mentioned earlier, the DOS does not maintain the disk when BLOCK
READs and BLOCK-WRITEs are used. But the user can make sure a particular 
block is available by using the BLOCK-ALLOCATE command. This allows use 
of BLOCK commands on a disk with files already on it. By checking the BAM, 
the command determines if the specified block has been used. Since the BAM 
updates each time a file is stored on the disk, files can be maintained. BLOCK 
commands do not update the BAM and so will not be recognized unless a 
BLOCK-ALLOCA TE has been executed. 

CA UTI ON : the V ALIDA TE command does not recognize random files 
and should never be used on a disk that has random files. 

20 



If BLOCK-ALLOCA TE determines that the specified block has already been 
used, an error signal (6S) will be generated. The error message tells you the 
numbers of the next available track and block on the disk. This block does not 
get allocated, so the BLOCK-ALLOCATE command must be used again, but this 
time you can be sure that the block specified is free to use. The following pro
gram will allocate a block and write to that block. If the block is already used, it 
will write to the next available one, as indicated by the error message. 

10 OPEN IS, 8, IS:OPEN 8, 8, 8," #" 
20 PRINT # 8 ,"THIS GOES INTO THE BUFFER" 
30 T = S : S =9 
40 PRINT # IS,"B-a:" 0, T, S 
SO INPUT # IS, A, A$, B, C 
60 IFA=6STHENT=B:S=C:GOT040 
70 PRINT # IS,"B-W:" 8, 0, T, S 
80 PRINT "DATA WAS STORED IN TRACK:"T," SECTOR:" S 
90 CLOSE 8:CLOSE IS 

100 END 

Line 20 loads the buffer with text, lines 30 and 40 check block 9 on track S to 
see if it's free, and line SO inputs the error signal. If the block is free, the data is 
stored there. Ifblock 9 on track S is already used, line 60 takes the new block and 
track numbers and allocates the block they specify, and then the data is stored in 
the new block. Lines 70 and 80 read the track and block numbers into the com
puter and print them on the screen. 

BLOCK-FREE 

PURPOSE: 
Free up a used block for new use. 

FORMAT: 

OPEN IS, 8, 15, "B-F:" drive #, track #, block # 

This command is the opposite of BLOCK-ALLOCATE, in that it frees a 
block you don't want to use any more for use by the system. It is something like 
the SCRATCH command in that it doesn't actually erase anything, just frees the 
entry, in this case just in the BAM. 

EXAMPLES: 

10 OPEN 8,8, "#" 
20 OPEN IS, 8, IS,"B-F:" 0, S, 9 
30 CLOSE 8:CLOSE IS 
(frees track S, block 9 for use) 

21 



BUFFER-POINTER 

PURPOSE: 

To allow random access inside a block. 

FORMAT: 

PRINT # IS,"B-p:" channel #, location (byte #) 

The buffer pointer keeps track of where the last piece of data was written, 
and points to where the next piece of data will be read. By changing the buffer 
pointer's location in the buffer, you can randomly access individual bytes inside a 
block. This means you can divide a single block into records. 

EXAMPLE: 

PRINT # IS,"B-P:" S, 64 (sets pointer to 64th character in buffer) 

USING RANDOM FILES 

The problem with random files is that you have no way of keeping track of 
which blocks you have used. To keep track, the most common method is to 
create a sequential file to go with each random file. This file is used to keep just a 
list of record, track, and block locations. This means you have three channels 
open to the disk for each random file: The command channel, the channel for 
the random data, and the channel for the sequential file. You're also using two 
buffers at the same time. 

Following you will find four programs that use random access within blocks: 

PROGRAM A writes 10 random blocks with a sequential file. 
PROGRAM B reads back the same file. 
PROGRAM C writes 10 random access blocks with 4 records each. 
PROGRAM D reads back the same file. 

PROGRAM A: WRITES SEQUENTIAL FILE 

10 OPEN IS, 8, IS 
20 OPEN S, 8, S," #" 
30 OPEN 4, 8, 4,"@ O:KEYS, S, W" 
40 A$ = "Record Contents #" 
SO FOR R = 1 TO 10 
60 PRINT # S, A$ "," R 
70 T = I:S= 1 
80 PRINT # IS,"B-A:"O, T, S 
90 INPUT # IS, A, B$, C, D 

100 IFA=65THENT=C:S=D: GOT080 

22 



110 PRINT # 15,"B-W:"5,0, T,S 
120 PRINT # 4, T "," S 
130 NEXT R 
140 CLOSE 4: CLOSE 5: CLOSE 15 

PROGRAM B: READS SEQUENTIAL FILE 

10 OPEN 15,8, 15 
20 OPEN 5, 8, 5," #" 
30 OPEN 4,8, 4,"KEYS, S, R" 
40 FOR R = I TO 10 
50 INPUT # 4, T, S 
60 PRINT # 15, "B-R:" 5, 0, T,S 
70 INPUT # 5, A$, X 
80 IF A$ 112 114 "Record Contents #" OR X I 12 I 14 "Record Contents 

#" OR X 1/2 1/4 R THEN STOP 
90 PRINT # 15, "B-F:" 0, T, S 

100 NEXTR 
110 CLOSE 4:CLOSE 5 
120 PRINT # 15,"SO:KEYS" 
130 CLOSE 15 

PROGRAM C: WRITES RANDOM ACCESS FILE 

10 OPEN 15,8, 15 
20 OPEN 5,8,5," #" 
30 OPEN 4,8,4, "KEYS, S, W" 
40 A$ = "Record Contents #" 
50 FOR R = I TO 10 
60 FORL= I T04 
70 PRINT # 15,"B-P:" 5: (L-I)*64 
80 PRINT # 5, A$ "," L 
90 NEXTL 

100 T=I: S=I 
110 PRINT # 15,"B-A:",0, T,S 
120 INPUT # 15, A, B$, C, D 
130 IF A = 65 THEN T = C : S = D : GOTO 110 
140 PRINT # 15,"B-W:" 5, 0, T, S 
150 PRINT # 4, T ",:" S 
160 NEXT R 
170 CLOSE 4: CLOSE 5: CLOSE 15 

23 



PROGRAM D: READS RANDOM FILE 

10 OPENIS, 8, IS 
20 OPEN S, 8, S, "#" 
30 OPEN 4, 8, 4, "KEYS, S, R" 
40 FORR= I TO 10 
SO INPUT # 4, T, S 
60 PRINT # IS,"B-R:"S,O,T,S 
70 FOR L= I T04 
80 PRINT # IS,"B-P:"S,(L-1)*64 
90 INPUT # S, A$, X 

100 IF A$ 1/2 114 "Record Contents #" OR X = L THEN STOP 
110 NEXT L 
120 PRINT # IS,"B-F:"O,T,S 
130 NEXT R 
140 CLOSE 4: CLOSE S 
ISO PRINT # IS,"SO: KEYS" 
160 CLOSE IS 

USERI 

PURPOSE: 

To read a fu1l2S6-byte block from disk to buffer. 

FORMAT: 

PRINT # file #, "U I:" channel #, drive #, track #, block # 

The USERI command is almost identical to the BLOCK-READ command 
except that USERI forces the buffer-pointer to the end of the block to be read, so 
the entire block is read. USERI can be abbreviated as either UI or UA. Follow
ing is a sample program that will get the entire 2S6 bytes from track S block 9 and 
display it on the screen. 

10 OPENIS,8,IS: OPEN8,8,8, 
20 PRINT # IS,"U I:" 8,0, S, 9 
30 GET #, A$: PRINT A$; 
40 IF ST = 0 THEN 30 
SO CLOSE 8: CLOSE IS 
60 END 

24 



USER 2 

PURPOSE: 

To write a block of data to the disk without altering the butTer-pointer. 

FORMAT: 

PRINT # 15, "U2:" channel # , drive # , track # , block # 

USER2 (abbreviated as U2 or UB) is very similar to the BLOCK-WRITE 
command. But U2 does not change the position of the butTer-pointer when the 
butTer is written to the disk. This is useful if you want to read a block of data into 
the butTer and modify it. After finding the particular data with the butTer-pointer 
and modifying it, the USER2 command can be used to rewrite the data to the disk 
and the butTer-pointer will be in the correct position. If BLOCK-WRITE was 
used, the butTer-pointer would have to be reset first. The following program uses 
the USERI and USER2 commands. 

10 OPEN 15,8,15: OPEN 8, 8, 8 
20 PRINT # 15,"Ul:"8,0,5,9 
30 PRINT # 15, "B-P: # 8,32" 
40 PRINT # 8, "A" 
50 PRINT # 15,"U2:"8,0,5,9 
60 CLOSE 8: CLOSE 15 
70 END 

Line 20 reads track 5 block 9 into the butTer. 
Line 30 moves the butTer-pointer to byte 32. 
Line 40 changes byte 32 to the character" A". 
Line 50 prints the butTer back to the disk. 
Even though the butTer-pointer has been altered, USER2 makes sure the old 

butTer-pointer is not changed on the disk. 

25 



8. RELATIVE FILES 

Relative files can access any piece of data on the disk, just like random files, 
but you don't have to maintain the files in your own program. The DOS main
tains the data for you, keeping track of the status of your files. Because of this, re
lative files are slower than random files, but often the extra convenience makes 
up for this. 

The DOS keeps track of the tracks and sectors (blocks) used, and even allows 
records to overlap from one block to the next. It does this by establishing side 
sectors, a series of pointers for the beginning of each record. There can be 6 side 
sectors in a file, and each side sector can point to up to 120 records. This means a 
file can have as many as 720 records, and since each record can be 254 characters 
long, one file can fill the entire disk. 

The block format consists of the first two bytes specifying the track and sec
tor of the next data block. The next 254 bytes contain the actual data. Any 
empty record will have FF (hexidecimal for all I's) in the first byte and 00 in the 
rest of the record. The side sectors are used to reference all side sector locations, 
not just the 120 data block locations related to that side sector. On the next page 
you will find a chart showing the format ofthe relative files. 

RELATIVE FILE FORMAT 

DATA BLOCK: 

BYTE DEFINITION 

0, I..... ....... ........... Track and sector of next data block. 
2-256 .................. 254 bytes of data. Empty records contain FF (all binary 

ones) in the first byte followed by 00 to the end ofthe 
record. Partially filled records are padded with nulls 
(00). 

SIDE SECTOR BLOCK: 

BYTE DEFINITION 

0,1 ....................... Track and sector of next side sector block. 
2 .......................... Side sector number (0-5). 
3.. ...... .......... ... ..... Record length. 
4,5..... ... ............... Track and sector of first side sector (0). 
6,7. .... ........ .......... Track and sector of second side sector (I). 
8,9....................... Track and sector of third side sector (2). 
10, II................... Track and sector of fourth side sector (3). 
12,13................... T rack and sector of fifth side sector (4). 
14,15................... Track and sector of sixth side sector (5). 
16-256 ................ Track and sector pointers to 120 data blocks. 

26 



USING RELATIVE FILES 

Relative files are created the first time they are OPENed. That same file will 
be used until it is CLOSEd. A relative file can only be erased from a disk by using 
the SCRATCH command or by re-formatting the entire disk. The "@ " sign, 
used with SAVE as a SAVE and REPLACE, will not work with relative files. 

FORMAT TO CREATE RELATIVE FILE: 

OPEN file # , device # , channel # , "0 name, L." +CHR$ (rl # ) (record 
length) 

EXAMPLES: 

OPEN 2, 8, 2, "0: FILE, L" +CHR$ (100) (record length is 100) 

OPEN F, 8, F, "0:" +A$ + ", L ," +CHR$ (Q) 

FORMA T TO OPEN EXISTING RELATIVE FILE: 

OPEN file #, device # , channel # ,"0: name" 

EXAMPLE: 

OPEN 2, 8, 6, "0: TEST" 

In this case, the DOS can tell by the syntax that it is a relative file. Both of 
the above formats allow either reading or writing to the file. 

HOWEVER: In order to read or write, BEFORE ANY OPERA TION, you 
must position the file pointer to the correct record position. 

POSITION 

PURPOSE: 

To POSITION the file pointer at a record. 

FORMAT: 

PRINT # file # , "P" CHR$ (channel #) CHR$ (rec # 10) 
CHR$ (rec #hi) CHR$ (record position) 

NOTE: CHR$ (record position) specifies the location within the record it
self and is optional. 

27 



Since there are 720 records available and the largest number one byte can 
hold is 256, two bytes must be used to specify the position. The rec # 10 contains 
the least significant part of the address and rec # hi hold the most significant. 
The relationship is represented by: rec # = rec # hi*256 + rec # 10. The rec # 
is the actual position in a record where data transfer starts. 

EXAMPLES: 

PRINT # 15, "P" CHR$ (2) CHR$ (I) CHR$ (0) 

PRINT # 15, "p" CHR$ (CH) CHR$ (Rl) CHR$ (R2) CHR$ (P) 

Here's a sample program that creates a relative file: 

10 OPEN 15,8, 15 
20 OPEN 8,8,8, "0: TEST, L,"+CHR$ (50) 
30 PRINT # 15, "P" CHR$ (8) CHR$ (0) CHR$ (4) CHR$ (1) 
40 PRINT # 8, CHR$ (255) 
50 CLOSE 8: CLOSE 15 

This program creates a relative file called TEST that will contain records 
that are 50 bytes long. Line 30 moves the pointer to the first position in record # 
1024 (rec # = 256*4 + 0 = 1024). Note that the POINTER command is sent on 
the command channel while data is sent on a data channel, 8 in this case. Since 
the record didn't already exist, an error message will be generated, warning you 
not to use GET # or INPUT #. 

Once a relative file exists, you can OPEN it and expand it or access it for data 
transfer. The file can be expanded but the record length cannot be changed. To 
expand a file just specify a larger number of records, as in Line 30 in the previous 
example program. To write data to an existing relative file use the following: 

10 OPEN 15,8, 15 
20 OPEN 2,8,6, "0: TEST" 
30 GOSUB 1000 
40 IF A = 100 THEN STOP 
50 PRINT # 15, "P" CHR$ (6)CHR$ (lOO)CHR$ (O)CHR$(l) 
60 GOSUB 1000 
70 IF A = 50 THEN PRINT # 2, L: GOTO 50 
80 IF A = 100 THEN STOP 
90 PRINT # 2, "123456789" 

100 PRINT # 15, "P" CHR$ (6) CHR$ (100) CHR$ (0) CHR$ (20) 
110 PRINT # 2, "JOHN QWERTY" 
120 CLOSE 2: CLOSE 15 
130 END 

1000 INPUT # 15, A, A$, B$, C$ 
1010 IF (A= 50) OR (A 112 20) THEN RETURN 
1020 PRINT "FATAL ERROR:"; 
I 030 PRINT A, A$, B$, C$ 
1040 A= 100: RETURN 

28 



Lines 10 and 20 open the command and a data channel. 
Lines 30 and 40 check for errors. 
Line 50 moves the file pointer to the I OOth record position. 
Since no records exist yet, an error signal is generated. 
Lines 60, 70, and 80 check for the error and create 100 records. 
Line 90 writes 9 bytes of data to the first 9 locations in record 100. 
Line I 10 then prints a name from that position. 

It is important that data is written into the record sequentially so data al
ready in the record is not destroyed. 

The following program reads back the data put in the file by the previous 
program. 

10 OPEN 15,8, IS 
20 OPEN 2,8,6, "0: TEST" 
30 GOSUB 1000 
40 IF A = 100 THEN STOP 
50 PRINT # IS, "P" CHR$ (6) CHR$ (100) CHR$ (0) CHR$ (I) 
60 GOSUB 1000 
70 IF A = 50 THEN PRINT A$ 
80 IF A = 100 THEN STOP 
90 INPUT # 2, D$: PRINT D$ 

100 PRINT # IS, "P" CHR$ (6) CHR$ (100) CHR$ (0) CHR$ (20) 
110 INPUT # 2, E$: PRINT E$ 
120 CLOSE 2: CLOSE 15 
130 END 

1000 INPUT # 15, A, A$, B$, C$ 
10 I 0 IF (A = 50) OR (A 1/2 20) THEN RETURN 
1020 PRINT "FATAL ERROR:"; 
1030 PRINT A, A$, B$, C$ 
1040 A = 100: RETURN 

Lines 90, 100, and I 10 read the record and display the contents on the 
screen. Notice that the carriage return sent to the disk after each PRINT # 
statement on the write routine is the separator for each field on the record. 

If the file is to be written or read sequentially, it isn't necessary to adjust the 
pointer to each record. The record pointer automatically starts at Position I if no 
other position has been defined. The pointer moves through the record as each 
field is read or written. 

29 



9. PROGRAMMING THE DISK CONTROLLER 

The Enhancer 2000 is a smart peripheral, which means that it contains its 
own microprocessor and memory. An advanced programmer can access the mi
croprocessor and its memory, providing a wide range of applications. Routines 
can be designed that reside in the disk memory and operate on the microproces
sor to control disk drive operation. DOS programs can be added that come from 
the actual disk. 

There is 16K of ROM in the disk drive as well as 2K RAM. The most useful 
area to the advanced programmer is the butTer RAM area located between 4000H 
and SFFFH (the H means it's a hexadecimal number). This area can actually be 
written into with Machine Language level instructions and executed by the disk 
controller (microprocessor). 

The method of handling data transfers to and from memory are referred to as 
MEMORY commands. There are three basic MEMORY commands, and some 
additional commands called USER commands. 

MEMORY-WRITE 

PURPOSE: 

Transfers up to 34 bytes of data to drive memory. 

FORMAT: 

PRINT # IS, "M-W:" CHR$ (address low byte) 

CHR$ (address high byte) CHR$ (# of characters) CHR$ (data) 

MEMORY-WRITE allows you to write up to 34 bytes of data at a time into 
the disk controller's memory. MEMORY-EXECUTE AND USER commands 
can be used to run this code. The low and high bytes are the decimal equivalent 
of the hexadecimal address in the actual memory space. The number of bytes is 
the decimal amount of bytes to be transferred, up to 34. The data must be the de
cimal representation of the hexadecimalcoded instruction you wish sent. See the 
example below. 

10 OPENIS,8,IS 
20 PRINT # 15, "M-W:" CHR$ (0) CHR$ (112) CHR$ (3) CHR$ (169) 

CHR$ (8) CHR$ (96) 
30 CLOSE IS 

This routine writes three bytes to locations 7000H, 7001 H, and 7002H 
(2S6* 112 + 0 = 28672 = 7000H). The three bytes are: 

30 



----~-------------

169 (A9H, a PAGE ZERO instruction), 
8 (8H, a location), 

96 (60H, a RETURN instruction). When executed, this program would 
cause the drive controller to load its accumulator with the contents of location 
0008H and then return control back to the disk drive. 

MEMORY-READ 

PURPOSE: 

Read data from drive memory. 

FORMAT: 

PRINT # 15 file #, "M-R:" CHR$ (address low byte) CHR$ (address high 
byte) 

The MEMORY-READ command selects a byte to be read from a location in 
the disk drive memory, specified by the low and high bytes of the location ad
dress. The next byte read (using GET #) from channel # 15 will be from the 
specified memory location. The following example illustrates this by reading 
data from 10 consecutive bytes, located from FFOOH to FFOAH (in decimal, 
65280 to 65290). 

10 OPENlS,8,JS 
20 FORA= 1 TO 10 
30 PRINT # IS, "M-R:" CHR$ (A) CHR$ (2S5) 
40 GET # 15, A$: PRINT ASC (A$ +CHR$ (0»; 
SO NEXT 
60 CLOSE 15 

When using MEMORY-READ, any use of INPUT # on the error channel 
will give peculiar results. This can be cleared up by using any other command, 
except the MEMORY commands. Here's a useful program that reads the disk 
controller's memory: 

10 OPEN 15,8,15 
20 INPUT "LOCATION PLEASE";A 
30 A I = INT (AI2S6): A2 = A - Al*256 
40 PRINT # IS, "M-R:" CHR$ (A2) CHR$(Al) 
50 FOR L = I TO S 
60 GET # IS,A$ 
70 PRINT ASC (A$ = CHR$ (0» 
80 NEXT 
90 INPUT "CONTINUE"; A$ 

100 IF LEFT$ (A$, 1) = "Y" THEN 50 
110 GOT020 

31 



MEMORY-EXECUTE 

PURPOSE: 

Executes program in disk memory. 

FORMAT: 

PRINT # IS file #, "M-E:" CHR$ (address low byte) 
CHR$ (address high byte) 

Once a program has been loaded into disk memory (either the 16K in the 
ROM or the 2K in the RAM), the address of the MEMORY-EXECUTE com
mand specifies where program execution will begin. The use of this command re
quires that the program to be executed end with an RTS instruction, so control 
will be returned to the ~OS. Following is a routine that writes an RTS (Return 
from Subroutine). 

10 OPEN 15,8, 15, "M-W:" CHR$ (0) CHR$ (5); 1; CHR$(96) 
20 PRINT # 15, "M-E:" CHR$ (0) CHR$ (19): REM JUMPS TO 

BYTE, RETURNS 
30 CLOSE IS 

USER COMMANDS 

Along with the USER I and USER2 commands discussed in chapter 7, there 
are others that, when executed, cause jumps to specific locations in the disk driv
e's buffer. This lets you make longer routines that operate in the disk's memory 
along with a jump table, even in BASIC. 

USER COMMAND FUNCTION 
UI or UA....................... BLOCK-READ without changing buffer-pointer 
U2 or UB ....................... BLOCK-WRITE without changing buffer-pointer 
U3 or UC ....................... jump to 0500H 
U4 or UO....................... jump to 0503H 
US or UE ....................... jump to 0506H 
U6 or UF ....................... jump to OS09H 
U7 orUG ....................... jump to 050CH 
U8 or UH....................... jump to 050FH 
U9 or UI ........................ jump to FFFAH 
U; or U1......................... power-up vector 
UI+ ................................ set Commodore 64 speed 
U-.................................. set VIC 20 speed 

EXAMPLES OF USER COMMANDS 

PRINT # 15, "U3" 

PRINT # IS, "U" +CHR$ (50+q) 

PRINT # 15, "VI" 

32 



10. CHANGING THE DEVICE NUMBER 

All peripherals need device numbers so the computer can identify which one 
you want to transfer data to or from. The Enhancer 2000 is preset inside the 
hardware with a device number of8, drive number O. The disk knows its own de
vice number by looking at a hardware jumper on the circuit board and writing the 
number based on the jumper into a section of its RAM. 

The device number can be changed by two methods, hardware and software. 
If you are temporarily using two disk drives, using the software method lets you 
change one drive's device number temporarily. If you expect to use two (or more) 
drives on a permanent basis, the hardware method is a simple and permanent 
way to change a drive's device number. 

SOFfW ARE METHOD 

The device number is changed by performing a MEMORY -WRITE to loca
tions 0077H and 0078H. The command is executed once the command channel 
has been opened. 

FORMAT: 

PRINT # file #, "M-W:" CHR$ (1 19) CHR$ (0) CHR$ (2) CHR$ (address 
+ 32) CHR$ (address + 64) 

The address is the new device number desired. Below IS an example of 
changing the device number to 9. 

10 OPEN 15,8. 15 
20 PRINT # 15, "M-W:"CHR$ (I19)CHR$ (0) CHR$ (2)CHR$ (9 + 

32) CHR$ (9+64) 
30 CLOSE 15 

First, turn on one drive and change its device number, then the next drive, 
until all the drives are on. 

33 



HARDWARE MI<:THOD 

To change the device number by the hardware method (or jumper method), 
all the tools you need are a Phillips-head screwdriver and a pliers. Just follow the 
steps below: 

I. Turn off the disk drive and remove all cables. 

2. Remove the screws from the drive's cover and take off the cover. 

3. Now, remove the screws that hold the drive mechanism in place above the 
printed circuit board. Then gently remove the drive mechanism. 

4. With the front of the drive facing you, the Jumper Block is on the left edge of 
the circuit board, all the way back. It's near the upper right-hand corner of 
Chip 04 (# 6522), with JP-I closer to the left of the drive. 

5. When shipped from the factory, there are jumpers on JP-I and on JP-2. This 
configuration makes the device number to be 8. The jumper is added to the 
old device number (8) when disconnected in other words: 

Removing JP-l makes the device number 1+8 = 9. 
Removing JP-2 makes the device number 2+8= 10. 
Removing both makes the device number I +2+8= II. 

Gently remove the appropriate jumper of your choice using a pair of long
nose pliers. Use caution to avoid cracking the jumper device. 

6. Once you've changed the device number, reposition the drive mechanism 
and retighten the mounting screws. 

7. Replace the drive's cover and securely tighten the screws. 

8. Reconnect the cables and turn the power on. The drive is now ready to use, 
and will always have your new device number. 

34 



APPENDIX A. LIST OF COMMANDS 

Chapter 4. Using Programs Page 

LOAD ..................................................................................................... 5 
SAVE ...................................................................................................... 7 
SAVE AND REPLACE .......................................................................... 8 
VERIFY .................................................................................................. 8 

Chapter 5. Disk Commands 

OPEN ...................................................................................................... 9 
PRINT # ................................................................................................ 9 
INITIALIZE ............................................................................................ 10 
NEW ....................................................................................................... 10 
SCRATCH .............................................................................................. 11 
COpy ...................................................................................................... 11 
RENAME ............................................................................................... 12 
VALIDATE ............................................................................................ 12 
CLOSE .................................................................................................... 13 

Chapter 6. Sequential Files 

OPEN ...................................................................................................... 14 
PRINT # ................................................................................................ 15 
GET # .................................................................................................... 16 
INPUT # ................................................................................................ 17 

Chapter 7. Random Files 

OPEN ...................................................................................................... 18 
BLOCK-READ ....................................................................................... 19 
BLOCK-WRITE ..................................................................................... 19 
BLOCK-ALLOCA TE ............................................................................. 20 
BLOCK-FREE ........................................................................................ 21 
BUFFER-POINTER ............................................................................... 22 
USER! .................................................................................................... 24 
USER2 .................................................................................................... 25 

Chapter 8. Relative Files 

POSITION .............................................................................................. 27 

Chapter 9. Programming the Disk Controller 

MEMORY-WRITE ................................................................................ 30 
MEMORy-READ .................................................................................. 31 
MEMORy-EXECUTE ........................................................................... 32 
USER COMMANDS .............................................................................. 32 

35 



APPENDIX B. DESCRIPTION OF ERROR MESSAGES 

Whenever an error signal is generated, the LED light on the front panel of 
the Enhancer 2000 will start flashing. The disk drive will not send the error mes
sage to the computer unless requested. The following routing inputs the error 
message and prints it on the computer's screen. 

10 OPEN 15,8,5 
20 INPUT # 15, A, A$, B$, C$ 
30 PRINT A, A$, B$, C$ 
40 CLOSE 15 
50 END 

Below is a list and explanation of the error messages used on the Enhancer 
2000 Disk Drive: 

0: NO ERROR 
This is not an indication of an error and will occur when the error chan
nel is read while the LED isn't flashing. 

I: FILES SCRA TCHED 
This also is not an error condition. Reading the error channel after one 
or more files have been scratched will show this, as well as the number 
offiles that have been scratched. 

2-19: UNUSED ERROR MESSAGE NUMBERS 

20: READ ERROR (block header not found) 
The disk controller is unable to detect a sync mark on the desired track. 
Caused by misalignment of the read/write head or disk not present, un
formatted, or not seated properly. Can also indicate a hardware failure. 

21: READ ERROR (no sync character) 
The disk controller is unable to detect a sync mark on the desired track. 
Caused by misalignment of the read/write head or disk not present, un
formatted, or not seated properly. Can also indicate a hardware failure. 

22: READ ERROR (data block not present) 
The disk controller has been requested to read or verify a data block that 
was not properly written. This error message occurs in conjunction with 
the BLOCK commands and indicates an illegal track and/or sector re
quest. 

23: READ ERROR (checksum error in data block) 
This error message indicates that there is an error in one or more of the 
data bytes. The data has been read into the DOS memory, but the 
checksum over the data is in error. May also indicate grounding prob
lems. 

36 



24: READ ERROR (byte decoding error) 
The data or header has been read into the DOS memory, but a hardware 
error has been created due to an invalid bit pattern in the data byte. 
May also indicate grounding problems. 

25: WRITE ERROR (write-verify error) 
This message is generated if the controller detects a mismatch between 
the written data and data in the DOS memory. 

26: WRITE PROTECT ON 
The controller has been requested to write a data block while the write 
protect switch is depressed. Typically, this is caused by using a disk 
with as write protect tab over the notch. 

27: READ ERROR (checksum error in header) 
There is an error in the header of the requested data block. The block 
has not been read into the DOS memory. May also indicate grounding 
problems. 

28: WRITE ERROR (long data block) 
The controller attempts to detect the sync mark of the next header after 
writing a data block. If the sync mark does not appear within a pre
determined time, the error message is generated. The error is caused by 
a bad disk format (data extends into the next block) or by a hardware fai
lure. 

29: DISK ID MISMATCH 
The controller has been requested to access a disk which has not been 
initialized or has a bad header. Also occurs if disks are switched during 
data transfer. 

30: SYNT AX ERROR (general syntax) 
The DOS cannot interpret the command sent to the command chan
nel. Typically, this is caused by an illegal number of file names or pat
terns that are illegally used. 

31 : SYNTAX ERROR (invalid command) 
The DOS doesn't recognize the command. The command must start in 
the first position. 

32: SYNT AX ERROR (long line) 
The command sent is longer than 58 characters. 

33: SYNTAX ERROR (invalid file name) 
Pattern matching is used invalidly in the OPEN or SAVE command. 

34: SYNTAX ERROR (no file given) 
The file name was left out of a command or the DOS does not recognize 
it as such. Typically, a colon (:) has been omitted. 

37 



35-38: NOT USED 

39: SYNTAX ERROR (invalid command) 
May result if the command sent to the command channel is unrecogni
zable by the DOS. 

40-49: NOT USED 

50: RECORD NOT PRESENT 
Result of disk reading past the last record through the INPUT # or 
GET # commands. This message will also occur after positioning to a 
record beyond the end of a file in a relative file. Ifthe intent is to expand 
the file by adding the new record (with a PRINT # command), the error 
message may be ignored. INPUT OR GET should not be used after this 
error occurs without first repositioning. 

51: OVERFLOW IN RECORD 
PRINT # statement exceeds the record boundary, truncating informa
tion. Since the carriage return, sent as a record terminator, is counted in 
the record size, this message will occur if the total characters in the re
cord (including the final carriage return) exceeds the defined size. 

52: FILE TOO LARGE 
Record position within a relative file indicates that disk overflow will re
sult. 

53-59: NOT USED 

60: WRITE FILE NOT OPEN 
A write file that has not been closed is being opened for reading, the se
cond time. 

61: FILE NOT OPEN 
A file being accessed has not been opened in the DOS. Sometimes in this 
situation, an error is not generated, the request is simply ignored. 

62: FILE NOT FOUND 
The requested file doesn't exist on the indicated drive. 

63: FILE EXISTS 
The file name of the file being created already exists on the disk. 

64: FILE TYPE MISMATCH 
The file type does not match the file type in the directory entry for the 
requested file. 

38 



65: NO BLOCK 
Occurs when a block to be allocated has already been allocated. The 
parameters indicate the track and sector available with the next highest 
number. If the parameters are zero, then all blocks higher in number are 
in use. 

66: ILLEGAL TRACK AND SECTOR 
The DOS has attempted to access a track or sector which does not exist 
in the format being used. May indicate a problem reading the pointer to 
the next block. 

67: ILLEGAL SYSTEM T OR S 
This special error indicates an illegal system track or sector. 

68,69: NOT USED 

70: NO CHANNEL (available) 
The requested channel is not available, or all channels are in use. A 
maximum of five sequential files may be opened at one time to the 
DOS. Direct access channels may have six opened files. 

71: DIRECTORY ERROR 
The BAM (Block Availability Map) does not match the internal count. 
There is a problem in the BAM allocation or the BAM has been over
written in DOS memory. To correct this problem, reinitialize the disk 
to restore the BAM in memory. Some active files may be terminated by 
the corrective action. 

72: DISK FULL 
Either the blocks on the disk are used up or the directory is at its limit of 
144 entries. 

73: DOS MISMATCH 
DOS I and 2 are read compatible but not write compatible. Disks may 
be interchangeably read with either DOS, but a disk formatted on one 
version cannot be written upon with the other version because the for
mat is different. This error is displayed whenever an attempt is made to 
write upon a disk which has been formatted in a non-compatible for
mat. This message may also appear after power up. 

74: DRIVE NOT READY 
An attempt has been made to access the disk drive when there isn't a 
disk in the drive. 

39 



NOTES 

Commodore is a registured Trade Mark of Commodore Business Machines, Inc. 

40 



MEMO 



MEMO 



FCC INFORMA nON 

This equipment generat es and uses Radio Frequency Energy and if not installed and used properly. that is, in strict 
accordance with manufactures instructions may cause interferance to radio and television reception. Ir has been type tested 

and found to com ply with the limits for a class B computing device in accordance with specifi cations in sub part] of part 15 of 
FCC Rules which are designed 10 provide reasonable protection against such interferance in a residential installation . 
However there is no guarantee that interferance will not occur in a particular installation. If this equipment does cause 
interferan ce to radi o or television reception . which can be determined by turning the equipment off and on. the user is 
encouraged to try to correct the interferance by one or more of the following measures. Reorient the receiving antenna. 

Reloc ate the computer with respect to the receiver. Move the computer away from the receiver. Plu g the computer into a 
different outlet so that computer and receiver are on different branch circuits. If necessary. user should consult dealer or an 

experienced radio or television technician for additional suggestions. 

The user may find the following booklet prepared by the FCC he lpful: .. How to Identify and Resolve Radio. Televi sio n 
interferance problems". This booklet is ava ilable from the U. S. Government Printing Offi ce. Washington D . C. 20402 

stock number 004-000-00345-4. 

SECOND 
YEAR 

EXTENDED 
WARRANTY 

" THE COMTEL GROUP" w",rants to the origi nal consumer purcha.ser I lint it s 
ENH/\NCER2000 DISK DRIVE for Commodore computers shall he r,ee from 

any defe ct in material or workman sh ip for a second year. Thi s EXTrNIJED 
SECOND YEAR WARRANTY Shall commence at the expiry of the illitial 
LIM !TED ONE YE/\ R WARRANTY and be in effect for a peri od of one year. If 
within this period of time a defect cove red by this warranty occurs. the 
ENHA NCER2000 Disk Drive unit should be returned to the place o f purchase or 
contact "THE COMTEL GROUP" for rcpair informatio n. The cost or this 

EXTENDED SECOND YEAR W/\RRANTY is $35 .00. To validate your 
EXTENDED SECOND YEAR W/\RRANTY you must return tile filled out 
warranty card along with a personal check. cas hiers check or mo ney order ray able 
to" THE COMTEL G ROUP" within filleen ( 15) days of the o riginal purchase 
date. 



Manufactured 
by 

CHINON INDUSTRIES, INC. 
in 

Japan 
Exclusively for 

"THE COMTEL GROUP,INC." 
P.O. Box 1 5485 

Santa Ana, California 92705 USA 
714-953-6165 
TELEX 503727 

Printed in Japan 
85.11.6.5K(G)·O 




