OWNERS MANUAL

ENIANCER

2000 .

DISK
DRIVE

A
NNNNNNNNNNNNNNNNNNNNN

aaaaa

Exclusively for

BONUS DISK INSTRUCTION

This program will allow you to check your floppy disk drive for the Commodore. Tt will allow you to check the DRIVE
mechanismthe READ electronics the WRITE electronics as wellas FORMATTING. Toload the Bonus disk simply insert
the floppy into your disk drive and type:

Load =$". 8 then hit Return (CR)
once loaded, type: List. then Return. this will list the directory. Once the directory has listed. to run the TEST program
simply type:

Load “test”, 8 and hit Return.
Once program has loaded type RUN. Please read the screen carefully. Remove the BONUS disk and insert a BLANK
SCRATCH disk| CAUTION: If the Bonus Disk is not removed and replaced with a BLANK SCRATCH Diskette. the
BONUS Disk will be DESTROYED. | and hit RETURN.

The program will now go thru its diagnostics checking the drive. read and write electronics. Once the diagnostics have

finished the program will either give you a PASS or FAIL rating. Should the unit FAIL please contact your dealer or The
Comtel Group at telephone Number 714-953-6165.

%%W%%WW%%%WWWWWQW%W%%%

LIMITED ONE YEAR WARRANTY

“THE COMTELGROUP™ Warrants to the original consumer purchaser that its ENHANCHE R 2000 DISK £

DRIVE for Commaodore computers shall be free from any defect in material and workmanaship fin a period of

ONE YEAR from the date of purchase. If within this period a defect covered by this warramy occns, the 38

ENHANCER 2000 DISK DRIVFE unit should he returned within this period to the place of purchasc or contact [w><>

“THE COMTEL GROUP™ for repair informatian. <
-
o

(

THE COMTEL GROUP. INC.
P.O. BOX 15485
Santa Ana, CA 92705 USA
Phonc (714) 953-6165

THIS WARRANTY IS CONTINGENT UPON THE FOLLOWING

CONDITIONS: §
1. The warranty card must be completed and mailed to” THE COMTEL GROUP™ by the original consumer
purchaser within fifcen (15) days of the original purchase date.
2. Ifthe proctuctis to be returncd to* THF COMTEL GROUP™ for warranty service an(((RMA))) number
must be obtained from our service depantment at** THE COMTEL GROUP' prior to returning the prexiuct.
3. The purchaser shall prepay shipping charges to* THE COMTEL GROUP™ and will accept aC O D return

. charge when submitting any equipment for warranty service.
4. Proof of purchase will be required upon submission of equipment for warrenty service
5. The purchaser must describe in writing the symptoms of the defective DISK DRIVE when sulunitted for
- warranty service.

i NOTE

(A) Any DISK DRIVE retumedto” THE COMTELGROUP™ whichis outof warranty will he subjcctioafat

rate charge for service. The repair rate may be obtained from the service departmeat at** THEF COMTEL
GROUP".

(B) This warranty is void if the serinl number has heen altered. defaced or removed.

This warranty gives you specific Jegal rights, and you may also have other rights which vary from state to state.
The provisions of this warranty shall not apply to an Enhancer Disc Drive which has been subject to misuse.
negligence. accident or alteration.

NN BA RN

Table of Contents Page

N

4.

6.

INtroduction....c.covceerveieemicririiiiniiieniinnnneseeseseesisrssssssssssseseserssssesseesssssssse 1
SPeCIfiCAtIONS ..ceoiiiiiiiiiiiiirriiiiiiniiii et snstanrereseeseasssssnsens 2
INSEAllAtION «covverieriiiiiiirneiientiiiien i cnestststtsreesesssesssessennnernesssaassenssassaes 4
BOX CONENLSovvrirerrniiniiiiieiiiiiiisiiiscsesestiessessisisssenassesssessesssesssassans 4
Cable CONNECtiONSccveeveeereerrerrrernessscrsrnneeeeeseseesessssssersessessssssreees 4
Turning on the POWETcccovvivriiiiiiiiiiiirnesetenienicsissnssnsessnssssesseeneeens 4
Disk INSEIrtioncovvumeeiiiiiiiiiniiiiiiiiineiceiiiniensssssesescse e sesseesseanans 4
USING Programs.........cccovveviiiiiiiiiiiiiiiiiineetiiniiesssissnnssseeessssssssssssssssses 5
Using Prepackaged SoftWwareccoccccveeriiriirennnrcrnenncsenienecssesneennsnns 5
LOAD COMMANccoceiriiiierannnsiresiosnenernssesessesessenessssssessessassssssesss 5
The DisK DIrectory.....cccueveuccriiiiiiiicieieieieienneneesneneseeesssseseeesssesssesssss 6
Pattern Matching and Wild Cardscccccovvvemeeeeeeeerecrccrnsnrecsennnnens 7
SAVE .oiiitiicrrrrnccsttnteseanssesssseatesessesessessenasssssseseasessssnananssss 7
SAVE AND REPLACE......coioniiiiinniriiiinennieneeeesssessesecssasassssenss 8
VERIFY ...iiiiiiinneeeiisctitiennnnsessssssssessesseessossssssessssssasassessannanaesass 8
Disk COMMANAScccovrermrmmmmeririrsisiesesessnsinnisesisesisssssssssssssssssssssssesssassasses 9
OPEN ..oiiiiiritetiirnneeeneisessetessssnsesessssssssessassessssssssassssssssesssssssaaasanss 9
PRINT # ceeeiiiirnnennenisstiiensnneesssassssssssss 9
INITIALIZE.......cuouruireenrinsnsinssssesessssssesssssssssssssssssssssssssssssssessssseses 10
INEW ciiiiiiiiiiintisineiiiecsisessissssssessssssstsssssssssesesssssssssssssesssssssssas 10
SCRATCH......coiiiireriintttiecnnttissesessssessssssssessessssssssssssasseasssses 11
COPY eeeeeeteeisstaeeis et te s st s s e e a st e e s e s se R Rt s e e s ab e et e s nnansaaaees 11
RENAMEuoiiiiiiiiiiiiitieinieestsessssesesesssesssssssssesesssassssesssssssssssssas 12
VALIDATEiiiicreeeecninneccecseeesssssessssssssnsesssssnnssssssasssassensssnes 12
Reading the Error Channelcocociivivciiiiininneniinineninssnneninnennnnns 13
CLOSEoittiiineitiiisnieieinsesstisssssssssessssssssssssssssssssassssessssssssssssss 13
Sequential Filesccovvvmiimiiiiiiiiiiiniiiiiteiiiiiininneecst e 14
OPEN ..coeiiicitiiicneeesinetesesssisssssssssssssossassessssssasssssssssssssssssnnnnasassss 14
PRINT # cceeecrrenreeeeiieieeneceesssennnesseessessssssnsasssessssessssssssennnsnnssnsnnees 15
GET # eiriiiiiiiiiniiiecieiniesinsesseestsesssessessssasesesssasssssssssssssssesses 16
INPUT # coeevreeiniinniininiisitiiinisessesssesnsssssessssssssssssssssssssessassssssssss 17

7. RANAOM FileS..cuuuuuuuieiiiiiiiiiiieieieieneernneennsesssisrereeeeererseesnssnssssssssssssssssssssses 18

OPEN ...coiiiiiiiniinnniisnetecnesssnnsssssssssssssssssssssssssssssssssanssssaasssssssssss 18

BLOCK-READccoiiiiiiriiiintinecnnessssntssssnsssssanssssesssssnssssssssssases 19

BLOCK-WRITE.ccciiitiinnirinniinnniniseeissacesssesssssssesssssssssassssseess 19

BLOCK-ALLOCATEcccccoiinuiiiinnnnesiinsnntasscsessnsssssssssasssssssasssssns 20

BLOCK-FREE.......cccccocuvverreane cesessssenessatsesnesesanteenns 21

BUFFER-POINTERccciiiiiiniiininnntiiniinnettnncnnnnsessssssnssssssssssssses 22

Using Random Filesccoivieiiiiiirniiiniineniiinnnnnenccsssneenscsssnneenes 22

USER 1 ..ccoiiiiiiiiiinintincntinsesaessnssssssssssssssssasssssnsssssssssssssssssasssssssssns 24

USER 2 ...oceiiiiniinineinneenecnsesssnssssasssssssssssssssasssssssasssssssssssssssasssssssses 25

8. Relative FileS...ccccovuiiiiiiireiiiinrceiiiniiiseieiissneeiessssneecsssnsanesessssnssssssssssssss 26

Relative File FOrmatccoovvveeiiiiinniiiinisneiinionsnnnneccsssnescessssnsessoses 26

Using Relative Files.........cccouvvviiiiininiiiniiniieiiniininneiincnnnnnnenesssseeeennsnns 27

POSITION ...uuuiiiiiiiiiiicineninneissseessntsssseisssssesssssssssssssssssssssssssssases 27

9. Programming the Disk Controllerccceiiiirivueiiiiniirnneriecsisneseeccsneences 30

MEMORY-WRITEcccccociiiiuiiniinnrnnninneennneessssasnesssssssnssssasssssanses 30

MEMORY-READcuiiintiiininiiniinnnnnissnsnsnnesiessansssssesssssssssnsssssasses 31

MEMORY-EXECUTE.....ccccoinuiiiiinnniienincneiencsssnseeessssssnssssssssnsssesas 32

USER Commandscccceeeirvuerieiissneeicisinneeissssssnneesssssssesssssssssssseses 32

10. Changing the Device Number 33

Software Methodccuuuiiiiiiineiiiiiinieieninnnneiesninneecesnnnnneessssnneees 33

Hardware Methodcccoovvvineiiiiiiiiiiiiiiininnneentieiiesnssssnsnnnnes 34
Appendices

A. List of COMMANMS......cccccovuiriinrnnreinirrsnsrcisssnessossssnressssssnsssssessssnsssons 35

B. Description of Error MesSSagesc.ccceeerereriienirrsnnncsssssnnessccssnssenes 36

il

1. INTRODUCTION

The Enhancer 2000 Disk Drive is a versatile and efficient disk drive built
for the Commodore series of personal computers. This drive is fully compatible
with the Commodore 64 computer and directly replaces the Commodore 1541
Disk Drive, giving much better performance in terms of data loading and writing
speed and memory buffer size.

If you are a beginner, the first few chapters will help you install and operate
the disk drive. As your skill and experience improves, you will find more uses for
your disk drive and the more advanced chapters will be very helpful.

If you’re an experienced professional, this manual can give you the informa-
tion you need to take advantage of all the power and features.

Regardless of the level of your programming expertise, the Enhancer 2000
will greatly increase the efficiency and capability of your computer system.

Please be aware that this manual is a reference guide to the operation of the
Enhancer 2000. While it contains step by step instructions and a section to let
you easily use prepackaged software, you should become familiar with BASIC
and the computer commands that help you operate your computer and its peri-
pherals.

Remember, you don’t need to learn everything in this manual at once. The
first three or four chapters will let you use the disk drive for most applications,
and the following chapters tell you how to set up files, access any data, and pro-
gram the disk drive itself at the machine language level.

NOTES: In FORMAT examples, lower case words need to be replaced by
an appropriate word or number that you choose.

In this manual, zeroes look like this: 0; and the letter ““oh” looks like this:
oorO.

2. SPECIFICATIONS
ENHANCER 2000 FLOPPY DISK DRIVE

*Slim line construction (low profile) and fully Commodore compatible direct
drive.

*Disk size: 5-1/4 inch diameter.

*Capacity
Per DisK.....coveeeiiiiiiiciieee e 174.8 k bytes
Directory Entriescccccvvevveeeeenn... 144/disk
Sector/Track........oooevvrnirivieennnn.n. 21
Bytes/Sector.......cooovveeeerinniiieneeas 256
Tracks...ccvveeeeeeieiee e 35

* Average MTBEF rate of 10,000 hours.

*Power Requirements
External

*Unit Dimensions
Height, width, depth 2-3/4”,7-1/3", 10"
Weight ..o, 5 1bs

*Dual serial port with chaining option.

*5-1/4 inch industry standard format.

*Direct drive mechanism.

COMPONENT DIAGRAM

LOCK + EJECT MECHANISM DRIVE INDICATOR

| T
— —7

\ (:RROR POWER]

ERROR INDICATOR POWER INDICATOR

_/

POWER SWITCH

POWER SOCKET
DUAL SERIAL
PORTS

3. INSTALLATION
Turn All Power OFF
BOX CONTENTS

The Enhancer 2000 Disk Drive consists of the disk drive, warranty card,
bonus disk, power supply, serial bus cable, and this manual. The power supply
has a connection for the back of the disk drive on one end, and a connection for a
three-prong electrical outlet on the other end. The serial bus cable has a six-pin
DIN plug on both ends.

CABLE CONNECTIONS

First, plug the power cable into the back of the disk drive. It won’t go in if
you try to put it in upside down. Next, plug the other end into the electrical out-
let. If the drive makes any sound at this time, turn it off using the switch on the
back! Do not plug any other cables into the drive with the power on.

Second, plug the serial bus cable into either one of the serial bus sockets on
the back of the drive. Turn off the computer and plug the other end of the cable
into the back of the computer. You’re ready to go!

If you have a printer or another disk drive, attach its cable to the remaining
serial bus socket to ““daisy chain” the devices. Ifit’s a disk drive, you will need to
change one of the drives device numbers. This is explained further on in the
manual.

TURNING ON THE POWER

When all the devices are hooked together, the power may be turned on. It is
important to turn them on in the correct order: the computer is always last.
Also: make sure there are no disks in the disk drive when you turn on the power.
(See attached notice.)

DISK INSERTION

To insert a disk, squeeze the gate and release to the open position, then
squeeze the gate closed until you hear a clicking sound. (The gate will latch
closed.) The disk goes in face up, with the large opening going in first and the
write-protect notch (a small square cutout in the disk) on the left.

Never remove a disk when the drive light is on! And remember, always re-
move the disk before the drive is turned on or off! Data can be destroyed by the
drive at this time!

4. USING PROGRAMS
USING PREPACKAGED SOFTWARE

If you want to use a program already written on a disk, such as a video game,
here’s all you have to do.

Insert the preprogrammed disk so the label on the disk is facing up and clo-
sest to you. There should be a little notch on the disk (maybe covered with tape)
that should be on the left. Now, type in LOAD “program name” and hit the RE-
TURN key. The disk drive will RUN and your screen will say:

SEARCHING FOR PROGRAM NAME
LOADING
READY

When the screen says READY, just type in RUN and hit the RETURN key
— your program is ready to use!

LOAD COMMAND

PURPOSE:
To transfer a program from the disk to the computer’s current memory.

FORMAT:
LOAD “program Name™, device #, command #

The program name is a character string, that is, either a name in quotes or
the contents of a given string variable. The device number is preset on the disk
drive’s circuit board to be 8. If you have more than one drive, read the chapter on
changing the device number for the disk drive.

The command number is optional. If not given, or zero, the program is load-
ed normally, into the start of your computer’s available memory for BASIC pro-
grams. If the number is 1, the program will be loaded into exactly the same me-

mory locations from which it came. The command number 1 is used mainly for
machine language, character sets, and other memory dependent functions.

EXAMPLES:
LOAD “TEST”, 8
LOAD “Program # 1, 8
LOAD “Mach Lang”, 8, 1

LOAD AS,), K

CAUTION: Besides putting your program into the computer’s current me-
mory, LOAD wipes out any previous program there!

NOTE: As in the last example, you can use variables to represent strings,
device numbers, and command numbers; just be sure they are all previous-
ly defined in your program. Also, see the note on file names on page 8.

THE DISK DIRECTORY

Your disk drive is a random access device. This means the read/write head
of the drive can go to any spot on the disk and access a single block of data, which
hold up to 256 bytes of information. There are 683 blocks on a disk.

Fortunately, you don’t have to worry about individual blocks of data (check
chapter 5 if you do). There is a program in the disk drive called the Disk Operat-
ing System, or dos, that keeps track of the blocks for you. It organizes them into a
Block Availibility Map, or BAM, and a directory. The BAM is simply a check-
list of the blocks, and is updated every time a program is SAVEd or a data file
OPENed.

The directory is a list of all programs and other files stored on the disk.
There are 144 entries available, consisting of information like file name and
type, a list of blocks used, and the starting block. Like the BAM, the directory is
updated each time a program is SAVEd or a file OPENed. However, the BAM
isn’t updated until the file is CLOSEd. If not CLOSEd properly, all data in that
file will be lost. More on this later.

The directory can be LOADed into your computer memory just like a BA-
SIC program. Put the disk in the drive and type:

LOAD “$”, 8

The computer will say:

SEARCHING FOR $

FOUND §

LOADING

READY

Now the directory is in current memory, and if you type LIST it will be dis-

played on the screen. To examine the directory from inside a BASIC program,
see chapter 6 concerning the GET »# statement.

6

PATTERN MATCHING AND WILD CARDS

To make LOADing easier, pattern matching lets you specify certain letters in
the program name so the first program in the disk that matches your pattern is
the one loaded.
EXAMPLES:

LOAD “*”, 8 (LOAD: first file on disk)

LOAD “TE*”, 8 (LOAD:s first file that starts with TE)

LOAD “TE??”, 8 (LOAD:s first file that has four letters and begins with TE)

LOAD “T?NT”, 8 (LOAD:s first file that has four letters but could be TINT,
TENT, et cetera)

The asterisk (*) tells the computer not to worry about the rest of the name
while the question mark (?) acts as a wild card.

The above can also be used when LOADing the directory into current me-
mory. This allows checking for a list of specific programs. The procedure is the
same as above except for the addition of a “$:”:

EXAMPLE:

LOAD “$:T?ST*”, 8 (LOADs all file names in the directory that have the
correct first, third, and fourth letters)

SAVE
PURPOSE:

Transfer a program in current memory onto the disk for later use.
FORMAT:

SAVE “program name”, device #, command #

As before, the command number is optional. If there is already a program or
file by the same name on the disk or there isn’t enough room on the disk, an error
signal will be generated. If there isn’t enough room, other programs will have to
be erased or used a different disk.

EXAMPLE:

SAVE “HOMEWORK?™, 8

SAVE AND REPLACE
PURPOSE:

Replace an already existing file with a revised version.
FORMAT:

SAVE “@ 0:program name”’, 8

If you edit an existing program and want to save it under the same name,
SAVE AND REPLACE does so automatically. If you want to keep the old ver-
sion, save the new version under a different name.
EXAMPLE:

SAVE:@ 0:HOMEWORK™, 8

VERIFY

PURPOSE:
Checks current program with one on the disk.

FORMAT:
VERIFY “program name”, device #,command #

VERIFY does a byte by byte comparison of the program in current memory
with one on the disk, as specified in the VERIFY command.

EXAMPLE:

VERIFY “OLD VERSION™, 8

NOTE ABOUT FILE NAMES: File names must begin with a letter not a
number. Spaces are permitted. While there is no restriction on the length
of a file name, all commands must be 58 or fewer characters in length. For
example, in the above VERIFY command, there are 10 characters besides
the actual program name, so the maximum name length, in this case, is 48
characters.

5. DISK COMMANDS

So far, you have learned the simple ways of using the disk drive. In order to
communicate more fully with the disk, disk commands need to be used. Two of
these, OPEN and PRINT # , allow the creation and filling of a data file on the
disk. Just as important is their ability to open a command channel, allowing the
exchange of information between computer and disk drive.
OPEN
PURPOSE:

Creates a file by OPENing a communication channel between computer and
disk drive.

FORMAT:

OPEN file # , device # , (command) channel #, text string

The file number should be any number from [to 127. Numbers from 128 to
255 can be used but should be avoided as they cause the PRINT # statement to
generate a linefeed after carriage returns. The device number is usually 8.

The channel number can be any number from 2 to 15. These refer to chan-
nels used to communicate with the disk, and channels 0 and | are used by the
operating system for LOADing and SAVEing. Channels 2 through 14 can be
used to send data to files while 15 is reserved as the command channel.

The text string is a character string that is used as the name for the file creat-
ed. A file cannot be created unless the file name is specified in the text string. If
you attempt to open a file already opened, the error signal “FILE OPEN ER-
ROR” will be generated.

EXAMPLES:

OPEN 5,8, 5 “TEST” (creates a file called TEST)

OPEN 15,8, 15, 1" (sends command to disk on command channel)

OPEN A,B,C,ZS (these variables must be defined)

PRINT #
PURPOSE:

Fills a previously OPENed file with data.

FORMAT:
PRINT # file #, text string

The PRINT # command works exactly like the PRINT command, except
the data goes to a device other than the screen, in this case the disk drive. When
used with a data channel, PRINT # sends information to a buffer in the disk
drive which then LOAD:s it onto the disk. When used with a command channel,
PRINT # sends commands to the disk drive. The command is placed inside
quotes as a text string.

EXAMPLES:
PRINT # 7, CS$ (fills file 7 with text string C$)

PRINT # 15,1 (sends disk command on command channel)
INITIALIZE

PURPOSE:

Initializes disk driver to power up condition.
FORMAT:

OPEN 15,8, 15,1 or

OPEN 15,8, 15: PRINT # 15, 1”

Sometimes, an error condition on the disk will prevent you from performing
an operation. INITIALIZE returns the disk drive to its original state when power
is turned on.

NEW

PURPOSE:

Formats new disk or re-formats used one.

FORMAT:

PRINT # 15, “NEW 0: disk name, id #”

This command formats a new disk. It is also useful to erase an already-
formatted disk, as it erases the entire disk, puts timing and block markers on, and
creates the directory and the BAM. The disk name is for user convenience while
the id # is a 2 digit alphanumeric identifier that is placed in the directory and
every block on the disk. If you switch disks while writing data, the drive will
know by checking the id # .

10

EXAMPLES:
OPEN 15, 8, 15, “NEW 0: TEST DISK, Al”
OPEN 15,8, 15: PRINT # 15, “N0: MY DISK, MY”

If the disk needs erasing but not reformatting, the same command is used, but
leave out the id # .

EXAMPLE:
OPEN 15,8, 15,“N0: NEW INFO”

SCRATCH
PURPOSE:

Erase a file or files from the disk.
FORMAT:

PRINT # 15, “SCRATCH 0: filename”

This command erases one or more files from the disk, making room for new
or longer files. Groups of files can be erased at one time by naming all of them in
one scratch command.

EXAMPLES:

PRINT # 15,S0: TEXT?” (erases file called TEXT)

PRINT # 15, “SCRATCHO0: TEXT, 0: TEST, 0: MUSIC”
(erases files TEXT, TEST, and MUSIC)

COoPY
PURPOSE:
Duplicate an existing file.
FORMAT:
PRINT # 15, “COPY 0: newfilename =0: oldfilename”
COPY allows you to make a copy of any program or file on the disk. The

new file’s name must be different from the old one. COPY can also combine up
to four files into one new one.

11

EXAMPLES:
PRINT # 15,“C0: BACKUP=0: ORIGINAL”

PRINT # 15, “COPY 0 :NEWFILE=0:0LDI1,0:0LD2,0”
(combines OLD1 and OLD?2 into NEWFILE)

RENAME
PURPOSE:
Change the name of existing file.
FORMAT:
" PRINT # 15, “RENAME 0: newname = 0: oldname™

This command lets you change the name of a file once it’s in the disk direc-
tory. RENAME will not work on any files that are currently open.

EXAMPLE:
PRINT # 15, “R 0 :GOODNAME =0 :DUMBNAME”
VALIDATE
PURPOSE:
Removes wasted spaces on disk.
FORMAT:
OPEN 15, 8, 15, “V0:”
After a disk has had many files saved and erased, small gaps in the data begin
to accumulate and waste memory space on the disk. VALIDATE reorganizes

your disk so you can get the most memory from the available space. Also, this
command removes files that were OPENed but never properly CLOSEd.

CAUTION! VALIDATE erases random files (see chapter 7). If your disk
contains random files, DO NOT use this command!

12

READING THE ERROR CHANNEL

Without the DOS Support Program, there is no way to read the disk error
channel since you need to use the INPUT # command, unusable outside a pro-
gram. Here is a simple BASIC program to read the error channel:

10 OPEN 15,8, 15
20 INPUT # 15, AS, B§, D$
30 PRINT AS, B$, C$, DS

When you use an INPUT # from the command channel, you read up to four
variables that describe the error condition. The first, third, and fourth are numb-
ers so numeric variables can be used. The inputs are organized as follows:

First: error number (0 means no error).

Second: error description.

Third: track number where error occurred.
Fourth: block (sector) in track where error occurred.

Errors on track 18 concern the BAM and directory.
CLOSE
PURPOSE:

Proper allocation of DATA BLOCKS, CLOSES ENTRY.
FORMAT:

CLOSE file #

This command is very important. Once a file that was opened is no longer
needed for data entry, IT MUST BE CLOSED OR ELSE ALL DATA IN THAT
FILE WILL BE LOST.

It is very important that the data files be CLOSEd before the error channel
(channel # 15)is CLOSEd. Otherwise, the disk drive will CLOSE them for you
but BASIC will still think they are open and let you try to write to them. The er-
ror channel should be OPENed first and CLOSEd last of all your files.

NOTE: If your BASIC program leads to an error condition, all files are
CLOSEd in BASIC, but not on the disk drive. This is VERY DANGER-
OUS! Immediately type:

CLOSE 15: OPEN 15, 8, 15: CLOSE 15

This will re-initialize your drive and make all your files safe.

6. SEQUENTIAL FILES

Sequential files are stored and read sequentially from beginning to end.
There are basically three different types of sequential files that can be used. The
first is the program file, which is abbreviated in the directory as PRG. The PRG
is the only sequential file that can store and read programs. The second file, se-
quential (SEQ), and the third file, user (USR), are for data handling. These two
files must be opened just like the command channel in the last chapter.

OPEN
PURPOSE:

Open a sequential file.
FORMAT:

OPEN file #, device #, channel #, “0: name, type, direction”

The file number is the same as in previous uses of the OPEN command, the
device number is usually 8, the channel number is a data channel, 2 through 14.
It’s a good idea to use the same number for both file and channel numbers, for
easy remembering (you may have noticed this in previous examples).

The name is the file name, for which no wild cards or pattern matching may
be used if you’re creating a write file. The type can be any one from the list be-

low, or at lease the first letter of one. The direction must be READ or WRITE,
or at lease their first letters.

FILE TYPE MEANING
PRG Program file
SEQ Sequential file
USR User file
REL Relative (not implemented in BASIC 2.0)
EXAMPLES:

OPEN S, 8,5, “0: DATA, S,R”
OPEN A, B, C,“0:TEXT, P, W”

OPEN A, B, C, “0:” + “U, W” (OPENSs a write file with a name specified by
the string variable AS)

14

OPEN 2, 8,2 “@ 0: PHONES, S, W” (replaces old version of the file with a
new one)

Once a file has been opened for reading or writing, three commands can be
used to actually transfer the data. These commands are PRINT x, INPUT %,
and GET #.

PRINT #
PURPOSE:
Directs output to previously opened file.
FORMAT:
PRINT % file #, data list (no space allowed between PRINT and #)

The PRINT # statement works exactly like PRINT: formatting capabilities
for punctuation and data types work just the same. But that means you need to
be careful when putting data into files. The file number is the one just OPENed
and the data list consists of variables and/or text inside quotation marks.

Care must be taken when writing in data so that it is as easy as possible to
read out later. Commas used to separate items will cause spaces to be stored on
the disk. Semi-colons will keep spaces from being stored. If both commas and se-
mi-colons are absent, a carriage return (CR) will be stored at the end of the data
that is written in. Consider the following example program:

10 A$=“THISISA”

20 BS=“TEST”

30 OPENS,8,8,“0: TEST S,W”

40 PRINT # 8, AS, BS “OF THE DISK”
50 CLOSES8

60 END

If you could see the data and its position on the disk, it would look like this:
112|3]4|5]|6]7|8]9]|10[11]12]13 l415‘16|17 lSIEJ
tlaltlsl Tilsl [a REER

20|21]22]23|24|25|26]27|28|29(30|31|32|33]| 34 I 35

TIEISITIOIFITIHIE DI 1 SKCRIeof (end of file)

The comma, semi-colon, and carriage return have special meaning when
stored to the disk. When used inside a string or quotes, they will be stored as re-
gular characters. When used as a separator between fields, the comma inserts
spaces (usually a waste of memory), the semi-colon doesn’t, and the CR stores a
carriage return on the disk. These are important when you use GET # or IN-
PUT # to retrieve the data you stored.

15

GET #
PURPOSE:

To get data from the disk byte by byte.
FORMAT:

GET # file # , variable list

Data comes in byte by byte, including CR’S, commas, and other separators.
Generally, it’s safer to use character string variables to avoid error messages.
EXAMPLES:

GET # 8, AS

GET # 5, A (only works for numerical data)

GET # A, B$, C$, d$ (GETs more than one variable at a time)

The GET # statement is very useful when the actual data content or struc-
ture is not known, such as a file on a disk that has been damaged. If you are fami-
liar with the file and there are no problems, INPUT # is more efficient. But to
look at data in an unfamiliar or damaged file, the following example program will
read the contents out (in this case, from the file created in the PRINT # example
program).

10 OPENS,8,8, “TEST”

20 GET# & AS: PRINT AS;

30 IFST=0THEN 20 (ST is a status signal)

40 CLOSES8

50 END

16

INPUT #
PURPOSE:

Retrieve disk data in groups.
FORMAT:

INPUT % file #, variable

The file number is the same as the one OPENed and the variable can repre-
sent character strings or numbers. To read a group of data, separators are needed
to indicate the start and finish of the group. These are the comma, semi-colon,
and CR, and work as explained in the section on the PRINT x# command.
Numbers are stored with a space in front of them, which is empty for positive
numbers and contains a negative sign for negative numbers. Here’s a sample pro-
gram:

10 OPENGR,8,8,“@ 0: DATAFILE, S, W”
20 FORA=LTO10
30 PRINT # 8§, A
40 NEXTA
50 CLOSE8
60 OPEN2,8,2,:“DATAFILE”
70 INPUT % 2,B:PRINTB
80 IFST=0THENT70
90 CLOSE2
100 END

This example program will write the numbers 1 through 10 to a sequential
file called DATAFILE. Lines 70 and 80 will read the data from the disk and
print it out. See page 22 for two useful sample programs.

17

7. RANDOM FILES

Sequential files are fine when you’re just working with a continuous stream
of data, but some jobs need more flexibility. For example, if you have a large
mailing list, it would be inconvenient to scan the entire list to find one person’s
address. A random access method would let you pick out the desired data with-
out having to read the whole file.

There are two file types that can do this: random files and relative files.
Random files are the best choice when speed is a desired factor, as in machine
language programs. This is because locations of the data are maintained by the
program when random files are used, while relative file locations are maintained
by the DOS. The problem is random files are easy to accidentally remove from
the disk since the DOS doesn’t maintain them.

Random files are files that have been written to a certain physical location on
the disk. The disk is divided into 35 concentric rings, or tracks, with each track
containing from 17 to 21 sectors.

TRACK NUMBER SECTOR RANGE TOTAL SECTORS
1tol7 0to 20 21
18 to 24 Oto 18 19
25t0 30 Oto17 18
31to 35 Oto 16 17

It is possible to read and write to any block on the disk, as well as determine
which blocks are available for use. The following commands explain how to use
the random file functions.

OPEN
PURPOSE:

OPEN:Ss a data channel for random access.
FORMAT:

OPEN file #, device #,channel #, “#”

When working with random files, you need to have two channels open to the
disk: the command channel (15) to send commands and a data channel (2 to 14)

for the data transfer. The data channel for random access files is OPENed by se-
lecting the pound sign, ““ # ”, as the file name.

18

The additional *“ #”* on the end of the command causes the disk to allocate a
256 byte buffer for the purpose of handling the desired block of data. If a buffer
number is specified, the allocated buffer will be the one you specified.

EXAMPLES:
OPEN 5, 8, 5, “ # ” (you don’t care which buffer)
OPEN A, B, C, *“ # 2” (you specify buffer 2) .pa
BLOCK-READ
PURPOSE:
To read a specific block of data from the disk.
FORMAT:

PRINT # file #,“BLOCK-READ:” channel #,drive #, track #, block #
(BLOCK-READ can be replaced with B-R)

The file and channel numbers are ones that have been OPENed. The track
number and block number indicate which 256 byte block is to be read. Executing
this command causes the disk drive to move the specified block of data into the
buffer area. The data can then be read from the buffer area using either INPUT
or GET #. Only data in that particular block will be read, and any unused
bytes in the block will not be read. The sample program below uses BLOCK-
READ to read the contents of block 9 on track 5 and display the block’s contents
on the screen.

10 OPEN 15,8,15

20 OPENS,8,8,“#”

30 PRINT # 15, “B-R:” 8,0, 5,9 (reads block into buffer)
40 GET #8,A$

50 PRINT AS;

60 IFST=0THEN 40

70 PRINT “READ COMPLETE”

80 CLOSE8: CLOSE 15

BLOCK-WRITE
PURPOSE:

Write a block of data to a specified block location on the disk.

19

FORMAT:

PRINT # file #, “BLOCK-WRITE:” drive #, channel #, track #,
block #

BLOCK-WRITE can be shortened to B-W. This command causes data pre-
viously stored in the buffer to be written to the specified location on the disk.
The data should be transferred to the buffer on a data channel using PRINT %
before BLOCK-WRITEing it to the disk. The DOS keeps track of how many
bytes are stored into the buffer and stores the byte count into the first byte of the
block when BLOCK-WRITE is executed. This means that only 255 bytes can ac-
tually be written to or read from the block, since the byte count uses the first byte
of the block. Here’s an example of a routine that will write data to the same
block that is read in the BLOCK-READ example above (track 5, block 9):

10 OPEN5,8,15

20 OPENS,8,8,“#”

30 FORAA=1TO32

40 PRINT # 8, “TESTING”

50 NEXT

60 PRINT # L5,“B-W:”8,0,5,9
70 CLOSE8: CLOSE 15

BLOCK-ALLOCATE
PURPOSE:

Determine if a particular block is free and allocate it if so.
FORMAT:

PRINT # 15,B-A:” channel #, drive #, track #, block #

As mentioned earlier, the DOS does not maintain the disk when BLOCK-
READs and BLOCK-WRITEs are used. But the user can make sure a particular
block is available by using the BLOCK-ALLOCATE command. This allows use
of BLOCK commands on a disk with files already on it. By checking the BAM,
the command determines if the specified block has been used. Since the BAM
updates each time a file is stored on the disk, files can be maintained. BLOCK
commands do not update the BAM and so will not be recognized unless a
BLOCK-ALLOCATE has been executed.

CAUTION: the VALIDATE command does not recognize random files
and should never be used on a disk that has random files.

20

If BLOCK-ALLOCATE determines that the specified block has already been
used, an error signal (65) will be generated. The error message tells you the
numbers of the next available track and block on the disk. This block does not
get allocated, so the BLOCK-ALLOCATE command must be used again, but this
time you can be sure that the block specified is free to use. The following pro-
gram will allocate a block and write to that block. If the block is already used, it
will write to the next available one, as indicated by the error message.

10 OPEN15,8,15:0PENS,8,8,“%”
20 PRINT # 8,“THIS GOES INTO THE BUFFER”
30 T=5:S5=9
40 PRINT # 15,“B-a:”0, T, S
50 INPUT # 15,A,AS$,B,C
60 IFA=65THENT=B:S=C:GOTO 40
70 PRINT % 15,B-W:78,0,T,S
80 PRINT “DATA WAS STORED IN TRACK:“T,” SECTOR:” S
90 CLOSE 8:CLOSE 15
100 END

Line 20 loads the buffer with text, lines 30 and 40 check block 9 on track 5 to
see if it’s free, and line 50 inputs the error signal. If the block is free, the data is
stored there. Ifblock 9 on track 5 is already used, line 60 takes the new block and
track numbers and allocates the block they specify, and then the data is stored in
the new block. Lines 70 and 80 read the track and block numbers into the com-
puter and print them on the screen.

BLOCK-FREE

PURPOSE:
Free up a used block for new use.

FORMAT:
OPEN 15, 8, 15,“B-F:” drive #, track #, block #

This command is the opposite of BLOCK-ALLOCATE, in that it frees a
block you don’t want to use any more for use by the system. It is something like
the SCRATCH command in that it doesn’t actually erase anything, just frees the
entry, in this case just in the BAM.

EXAMPLES:
10 OPENS,8,“#”
20 OPEN15,8,15,“B-F:”0,5,9

30 CLOSE 8:CLOSE 15
(frees track S, block 9 for use)

21

BUFFER-POINTER
PURPOSE:

To allow random access inside a block.
FORMAT:

PRINT % 15,B-p:” channel #, location (byte)

The buffer pointer keeps track of where the last piece of data was written,
and points to where the next piece of data will be read. By changing the buffer
pointer’s location in the buffer, you can randomly access individual bytes inside a
block. This means you can divide a single block into records.

EXAMPLE:
PRINT % 15,“B-P:” 5, 64 (sets pointer to 64th character in buffer)
USING RANDOM FILES

The problem with random files is that you have no way of keeping track of
which blocks you have used. To keep track, the most common method is to
create a sequential file to go with each random file. This file is used to keep just a
list of record, track, and block locations. This means you have three channels
open to the disk for each random file: The command channel, the channel for
the random data, and the channel for the sequential file. You’re also using two
buffers at the same time.

Following you will find four programs that use random access within blocks:

PROGRAM A writes 10 random blocks with a sequential file.
PROGRAM B reads back the same file.

PROGRAM C writes 10 random access blocks with 4 records each.
PROGRAM D reads back the same file.

PROGRAM A: WRITES SEQUENTIAL FILE

10 OPEN15,8,15

20 OPENS,8,5,“#%”

30 OPEN4,8,4,“@ 0:KEYS, S, W”

40 AS$=‘Record Contents %"

50 FORR=1TO10

60 PRINT # 5,A$“”R

70 T=1:S=1

80 PRINT # 15,“B-A:0,T,S

90 INPUT # 15,A,B$,C,D
100 IFA=65THENT=C:S=D: GOTO 80

22

110
120
130
140

PRINT # 15,“B-W:*“5,0, T, S
PRINT #4, T “’S

NEXT R

CLOSE 4:CLOSE 5:CLOSE 15

PROGRAM B: READS SEQUENTIAL FILE

10
20
30
40
50
60
70
80

90
100
110
120
130

OPEN 15,8, 15

OPEN S, 8,5,“#”
OPEN4,8,4,“KEYS, S,R”
FORR=1TO 10

INPUT # 4,T,S

PRINT # 15,*“B-R:” 5,0, T,S
INPUT # 5, A$, X

IF A$ 1/2 1/4 “Record Contents #” OR X 1/2 1/4 “Record Contents
#”OR X 1/2 1/4 R THEN STOP
PRINT # 15,“B-F:”0, T, S
NEXTR

CLOSE 4:CLOSE 5

PRINT # 15,SO:KEYS”
CLOSE 15

PROGRAM C: WRITES RANDOM ACCESS FILE

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170

OPEN 15,8, 15
OPENS5,8,5“#%”

OPENY4, 8,4, “KEYS, S, W”

AS$ =“Record Contents #
FORR=1TO 10
FORL=1TO4

PRINT # 15,B-P:” 5: (L-1)*64
PRINT # 5,A$“,’L

NEXTL

T=1:S=1

PRINT # 15,“B-A:”,0, T, S
INPUT # 15,A,B$,C,D
IFA=65THENT=C : S=D : GOTO 110
PRINT # 15,“B-W:”5,0,T,S
PRINT %4, T“:”S

NEXT R

CLOSE 4: CLOSE 5: CLOSE 15

23

PROGRAM D: READS RANDOM FILE

10 OPENIS, 8,15
20 OPENS,8,5,“#”
30 OPENA4,8,4,“KEYS, S, R”
40 FORR=I1TO10
50 INPUT # 4,T,S
60 PRINT # 15,“B-R:”5,0,T,S
70 FORL=1TO4
80 PRINT # 15, *“B-P:” 5, (L-1)*64
90 INPUT # 5,AS$,X
100 IF A$ 1/2 1/4 “Record Contents #” OR X =L THEN STOP
110 NEXTL
120 PRINT # 15,“B-F:”0,T,S
130 NEXTR
140 CLOSE4: CLOSES
150 PRINT # 15,“S0: KEYS”
160 CLOSE 15

USER1
PURPOSE:
To read a full 256-byte block from disk to buffer.
FORMAT:
PRINT # file #,“Ul:” channel #, drive #, track # , block #

The USER! command is almost identical to the BLOCK-READ command
except that USERI1 forces the buffer-pointer to the end of the block to be read, so
the entire block is read. USERI1 can be abbreviated as either Ul or UA. Follow-
ing is a sample program that will get the entire 256 bytes from track 5 block 9 and
display it on the screen.

10 OPEN 15,8, 15: OPEN 8,8, 8,
20 PRINT # 15,“U1:78,0,5,9
30 GET #,AS$: PRINT AS;

40 IFST=0THEN30

50 CLOSE&: CLOSE 15

60 END

24

USER 2
PURPOSE:

To write a block of data to the disk without altering the buffer-pointer.
FORMAT:

PRINT # 15,U2:” channel #, drive #, track # , block #

USER?2 (abbreviated as U2 or UB) is very similar to the BLOCK-WRITE
command. But U2 does not change the position of the buffer-pointer when the
buffer is written to the disk. This is useful if you want to read a block of data into
the buffer and modify it. After finding the particular data with the buffer-pointer
and modifying it, the USER2 command can be used to rewrite the data to the disk
and the buffer-pointer will be in the correct position. If BLOCK-WRITE was
used, the buffer-pointer would have to be reset first. The following program uses
the USER1 and USER2 commands.

10 OPEN15,8,15: OPENS, 8,8
20 PRINT # 15,U1:8,0,5,9

30 PRINT # 15, “B-P: # 8,32”

40 PRINT # 8, “A”

50 PRINT # 15,“U2:78,0,5,9
60 CLOSE 8: CLOSE 15

70 END

Line 20 reads track 5 block 9 into the buffer.

Line 30 moves the buffer-pointer to byte 32.

Line 40 changes byte 32 to the character “A”.

Line 50 prints the buffer back to the disk.

Even though the buffer-pointer has been altered, USER2 makes sure the old
buffer-pointer is not changed on the disk.

25

8. RELATIVE FILES

Relative files can access any piece of data on the disk, just like random files,
but you don’t have to maintain the files in your own program. The DOS main-
tains the data for you, keeping track of the status of your files. Because of this, re-
lative files are slower than random files, but often the extra convenience makes
up for this.

The DOS keeps track of the tracks and sectors (blocks) used, and even allows
records to overlap from one block to the next. It does this by establishing side
sectors, a series of pointers for the beginning of each record. There can be 6 side
sectors in a file, and each side sector can point to up to 120 records. This means a
file can have as many as 720 records, and since each record can be 254 characters
long, one file can fill the entire disk.

The block format consists of the first two bytes specifying the track and sec-
tor of the next data block. The next 254 bytes contain the actual data. Any
empty record will have FF (hexidecimal for all I’s) in the first byte and 00 in the
rest of the record. The side sectors are used to reference all side sector locations,
not just the 120 data block locations related to that side sector. On the next page
you will find a chart showing the format of the relative files.

RELATIVE FILE FORMAT

DATA BLOCK:
BYTE DEFINITION
(U D Track and sector of next data block.
2-256 i, 254 bytes of data. Empty records contain FF (all binary

ones) in the first byte followed by 00 to the end of the
record. Partially filled records are padded with nulls
(00).

SIDE SECTOR BLOCK:

BYTE DEFINITION

(028 USRS Track and sector of next side sector block.
2 Side sector number (0-5).

K TR Record length.

4.5 Track and sector of first side sector (0).
6,7 oo, Track and sector of second side sector (1).
89 i, Track and sector of third side sector (2).
10,11, Track and sector of fourth side sector (3).
12,13, Track and sector of fifth side sector (4).
14,15 e, Track and sector of sixth side sector (5).
16-256u...... Track and sector pointers to 120 data blocks.

26

USING RELATIVE FILES

Relative files are created the first time they are OPENed. That same file will
be used until it is CLOSEd. A relative file can only be erased from a disk by using
the SCRATCH command or by re-formatting the entire disk. The “@ * sign,
used with SAVE as a SAVE and REPLACE, will not work with relative files.
FORMAT TO CREATE RELATIVE FILE:

OPEN file # , device # , channel #, *“0 name, L.”” +CHRS (rl #) (record
length)

EXAMPLES:
OPEN 2,8,2,0: FILE, L” +CHRS (100) (record length is 100)
OPENF, 8§, F,“0:”+A$+*“,L,”+CHR$ (Q)
FORMAT TO OPEN EXISTING RELATIVE FILE:
OPEN file # , device # , channel #, “0: name”
EXAMPLE:
OPEN 2, 8,6, “0: TEST”

In this case, the DOS can tell by the syntax that it is a relative file. Both of
the above formats allow either reading or writing to the file.

HOWEVER: In order to read or write, BEFORE ANY OPERATION, you
must position the file pointer to the correct record position.

POSITION
PURPOSE:

To POSITION the file pointer at a record.
FORMAT:

PRINT # file #, “P” CHRS (channel #) CHRS (rec # lo)
CHRS (rec #hi) CHRS (record position)

NOTE: CHRS (record position) specifies the location within the record it-
self and is optional.

27

Since there are 720 records available and the largest number one byte can
hold is 256, two bytes must be used to specify the position. The rec # lo contains
the least significant part of the address and rec # hi hold the most significant.
The relationship is represented by: rec # =rec # hi*256 +rec # lo. Therec #
is the actual position in a record where data transfer starts.

EXAMPLES:
PRINT # 15, “P” CHRS (2) CHRS (1) CHRS (0)
PRINT # 15, “p” CHR$ (CH) CHRS (R1) CHRS$ (R2) CHRS (P)
Here’s a sample program that creates a relative file:

10 OPEN 15,8, 15

20 OPENS,8,8,“0: TEST, L,” + CHR$ (50)

30 PRINT # 15, “P” CHRS (8) CHRS (0) CHRS (4) CHRS (1)
40 PRINT # 8, CHRS (255)

50 CLOSE8: CLOSEI5

This program creates a relative file called TEST that will contain records
that are 50 bytes long. Line 30 moves the pointer to the first position in record #
1024 (rec # =256*4 + 0 = 1024). Note that the POINTER command is sent on
the command channel while data is sent on a data channel, 8 in this case. Since
the record didn’t already exist, an error message will be generated, warning you
not to use GET # or INPUT #.

Once a relative file exists, you can OPEN it and expand it or access it for data
transfer. The file can be expanded but the record length cannot be changed. To
expand a file just specify a larger number of records, as in Line 30 in the previous
example program. To write data to an existing relative file use the following:

10 OPEN 15,8,15
20 OPEN2,8,6,“0: TEST”
30 GOSUB 1000
40 IFA=100 THEN STOP
50 PRINT # 15, “P” CHRS$ (6) CHRS$ (100) CHRS (0) CHRS (1)
60 GOSUB 1000
70 IF A=50 THEN PRINT # 2,L: GOTO 50
80 IFA=100THEN STOP
90 PRINT # 2,“123456789”
100 PRINT # 15, “P” CHRS (6) CHRS (100) CHRS (0) CHRS (20)
110 PRINT # 2, “JOHN QWERTY”
120 CLOSE2: CLOSEIS
130 END
1000 INPUT % 15, A, A%, BS, C$
1010 IF (A =50) OR (A 1/220) THEN RETURN
1020 PRINT “FATAL ERROR:”;
1030 PRINT A, AS, B$, C$
1040 A=100: RETURN

28

Lines 10 and 20 open the command and a data channel.

Lines 30 and 40 check for errors.

Line 50 moves the file pointer to the 100th record position.

Since no records exist yet, an error signal is generated.

Lines 60, 70, and 80 check for the error and create 100 records.
Line 90 writes 9 bytes of data to the first 9 locations in record 100.
Line 110 then prints a name from that position.

It is important that data is written into the record sequentially so data al-
ready in the record is not destroyed.

The following program reads back the data put in the file by the previous

program.

10
20
30
40
50
60
70
80
90
100
110
120
130
1000
1010
1020
1030
1040

Lines

OPEN 15,8, 15

OPEN 2, 8, 6, “0: TEST”

GOSUB 1000

IF A =100 THEN STOP

PRINT # 15, “P” CHRS$ (6) CHRS$ (100) CHRS (0) CHRS (1)
GOSUB 1000

IF A =50 THEN PRINT A$

IF A =100 THEN STOP

INPUT # 2,D$: PRINT D$

PRINT # 15, “P” CHRS$ (6) CHRS$ (100) CHRS (0) CHRS (20)
INPUT # 2,E$: PRINT E$

CLOSE 2: CLOSE 15

END

INPUT # 15, A, A$, B$, C$

IF (A =50) OR (A 1/2 20) THEN RETURN

PRINT “FATAL ERROR:";

PRINT A, AS, BS, C$

A=100: RETURN

90, 100, and 110 read the record and display the contents on the

screen. Notice that the carriage return sent to the disk after each PRINT #
statement on the write routine is the separator for each field on the record.

If the file is to be written or read sequentially, it isn’t necessary to adjust the
pointer to each record. The record pointer automatically starts at Position 1 if no
other position has been defined. The pointer moves through the record as each
field is read or written.

29

9. PROGRAMMING THE DISK CONTROLLER

The Enhancer 2000 is a smart peripheral, which means that it contains its
own microprocessor and memory. An advanced programmer can access the mi-
croprocessor and its memory, providing a wide range of applications. Routines
can be designed that reside in the disk memory and operate on the microproces-
sor to control disk drive operation. DOS programs can be added that come from
the actual disk.

There is 16K of ROM in the disk drive as well as 2K RAM. The most useful
area to the advanced programmer is the buffer RAM area located between 4000H
and SFFFH (the H means it’s a hexadecimal number). This area can actually be
written into with Machine Language level instructions and executed by the disk
controller (microprocessor).

The method of handling data transfers to and from memory are referred to as
MEMORY commands. There are three basic MEMORY commands, and some
additional commands called USER commands.

MEMORY-WRITE
PURPOSE:
Transfers up to 34 bytes of data to drive memory.
FORMAT:
PRINT # 15, “M-W:” CHRS (address low byte)
CHRS (address high byte) CHRS (# of characters) CHRS (data)

MEMORY-WRITE allows you to write up to 34 bytes of data at a time into
the disk controller’s memory. MEMORY-EXECUTE AND USER commands
can be used to run this code. The low and high bytes are the decimal equivalent
of the hexadecimal address in the actual memory space. The number of bytes is
the decimal amount of bytes to be transferred, up to 34. The data must be the de-
cimal representation of the hexadecimalcoded instruction you wish sent. See the
example below.

10 OPEN15,8,15

20 PRINT # 15, “M-W:” CHRS$ (0) CHRS (112) CHRS$ (3) CHRS (169)
CHRS (8) CHRS (96)

30 CLOSE I5

This routine writes three bytes to locations 7000H, 7001H, and 7002H
(256*112 +0=28672 = 7000H). The three bytes are:

30

169 (A9H, a PAGE ZERO instruction),
8 (8H, a location),
96 (60H, a RETURN instruction). When executed, this program would
cause the drive controller to load its accumulator with the contents of location
0008H and then return control back to the disk drive.

MEMORY-READ
PURPOSE:

Read data from drive memory.
FORMAT:

PRINT # 15 file #, “M-R:” CHRS (address low byte) CHRS (address high
byte)

The MEMORY-READ command selects a byte to be read from a location in
the disk drive memory, specified by the low and high bytes of the location ad-
dress. The next byte read (using GET #) from channel # 15 will be from the
specified memory location. The following example illustrates this by reading
data from 10 consecutive bytes, located from FFOOH to FFOAH (in decimal,
65280 to 65290).

10 OPEN 15,8, 15

20 FORA=1TO10

30 PRINT # 15, “M-R:” CHRS$ (A) CHRS (255)
40 GET # 15, A$: PRINT ASC (A$ + CHRS (0));
50 NEXT

60 CLOSE 15

When using MEMORY-READ, any use of INPUT # on the error channel
will give peculiar results. This can be cleared up by using any other command,
except the MEMORY commands. Here’s a useful program that reads the disk
controller’s memory:

10 OPEN15,8,15
20 INPUT “LOCATION PLEASE”;A
30 Al=INT (A/256): A2=A-A1*256
40 PRINT # 15, “M-R:” CHRS$ (A2) CHRS$(A1)
50 FORL=1TOS
60 GET # 15,A%
70 PRINT ASC (A$ =CHRS (0))
80 NEXT
90 INPUT “CONTINUE”; AS$
100 IFLEFTS (AS$, 1)=*Y” THEN 50
110 GOTO20

31

MEMORY-EXECUTE
PURPOSE:

Executes program in disk memory.
FORMAT:

PRINT # 15 file #, “M-E:”” CHRS (address low byte)
CHRS (address high byte)

Once a program has been loaded into disk memory (either the 16K in the
ROM or the 2K in the RAM), the address of the MEMORY-EXECUTE com-
mand specifies where program execution will begin. The use of this command re-
quires that the program to be executed end with an RTS instruction, so control
will be returned to the DOS. Following is a routine that writes an RTS (Return
from Subroutine).

10 OPEN 15,8, 15, “M-W:” CHRS (0) CHRS (5); 1; CHRS (96)

20 PRINT g 15, “M-E:” CHRS (0) CHRS (19): REM JUMPS TO
BYTE, RETURNS

30 CLOSE I5

USER COMMANDS

Along with the USER1 and USER2 commands discussed in chapter 7, there
are others that, when executed, cause jumps to specific locations in the disk driv-
e’s buffer. This lets you make longer routines that operate in the disk’s memory
along with a jump table, even in BASIC.

USER COMMAND FUNCTION
UlorUA......cooveeeen. BLOCK-READ without changing buffer-pointer
U2orUB....cccoeeeen. BLOCK-WRITE without changing buffer-pointer
U3orUC......eeees jump to 0500H
U4 orUD.....cccoevuvnnnnnnn. jump to 0503H
USorUE.......covueunnnnn. jump to 0506 H
U6borUF.........coeeuun.... jump to 0509H
U70orUG.....cccceeeaneen. jump to 050CH
U8orUH...........cuueee. jump to 050FH
U9orUI.........coeeennnn. jump to FFFAH
Us;orUJoooiiis power-up vector
Ul+ ., set Commodore 64 speed
U, set VIC 20 speed

EXAMPLES OF USER COMMANDS
PRINT # 15,“U3”
PRINT # 15, “U” +CHRS (50+q)
PRINT # 15, “UI”

32

10. CHANGING THE DEVICE NUMBER

All peripherals need device numbers so the computer can identify which one
you want to transfer data to or from. The Enhancer 2000 is preset inside the
hardware with a device number of 8, drive number 0. The disk knows its own de-
vice number by looking at a hardware jumper on the circuit board and writing the
number based on the jumper into a section of its RAM.

The device number can be changed by two methods, hardware and software.
If you are temporarily using two disk drives, using the software method lets you
change one drive’s device number temporarily. If you expect to use two (or more)
drives on a permanent basis, the hardware method is a simple and permanent
way to change a drive’s device number.

SOFTWARE METHOD

The device number is changed by performing a MEMORY-WRITE to loca-
tions 0077H and 0078H. The command is executed once the command channel
has been opened.

FORMAT:

PRINT # file #, “M-W:” CHRS (119) CHRS (0) CHRS (2) CHRS$ (address
+32) CHRS (address + 64)

The address is the new device number desired. Below is an example of
changing the device number to 9.

10 OPEN15,8,15

20 PRINT # 15, “M-W:” CHR$ (119) CHRS (0) CHRS$ (2) CHRS$ (9 +
32) CHRS (9+64)

30 CLOSE5

First, turn on one drive and change its device number, then the next drive,
until all the drives are on.

33

HARDWARE METHOD

To change the device number by the hardware method (or jumper method),

all the tools you need are a Phillips-head screwdriver and a pliers. Just follow the
steps below:

l.

2.

Turn off the disk drive and remove all cables.
Remove the screws from the drive’s cover and take off the cover.

Now, remove the screws that hold the drive mechanism in place above the
printed circuit board. Then gently remove the drive mechanism.

With the front of the drive facing you, the Jumper Block is on the left edge of
the circuit board, all the way back. It’s near the upper right-hand corner of
Chip 04 (# 6522), with JP-1 closer to the left of the drive.

When shipped from the factory, there are jumpers on JP-1 and on JP-2. This
configuration makes the device number to be 8. The jumper is added to the
old device number (8) when disconnected in other words:

Removing JP-1 makes the device number [+8 =9.

Removing JP-2 makes the device number 2+8=10.

Removing both makes the device number 142+8=11.

Gently remove the appropriate jumper of your choice using a pair of long-
nose pliers. Use caution to avoid cracking the jumper device.

Once you’ve changed the device number, reposition the drive mechanism
and retighten the mounting screws.

Replace the drive’s cover and securely tighten the screws.

Reconnect the cables and turn the power on. The drive is now ready to use,
and will always have your new device number.

34

APPENDIX A. LIST OF COMMANDS

Chapter 4. Using Programs Page
LOAD ..ttt e ettt neeennee s 5
SAVE Lttt 7
SAVE AND REPLACEooiiiiiiiiiiiiiiieit et 8
VERIFY Lottt ettt e et e e sttt e e eaee s 8

OPEN . e e 9
PRINT # oo 9
INITIALIZE.ot 10
NEW Lo, 10
SCRATCH ..o 11
COPY et 11
RENAME ..ot e 12
VALIDATE ..o 12
CLOSE .. 13

OPEN ... 14
PRINT # oo s 15
GET # e 16
INPUT # i 17

OPEN . 18
BLOCK-READ ...ttt 19
BLOCK-WRITE ..ot 19
BLOCK-ALLOCATEoiiiiiii ittt 20
BLOCK-FREE ..ot 21
BUFFER-POINTER ..o 22
USERI Lot 24
USERZ ..o e 25

Chapter 8. Relative Files

POSITION ..ot 27

Chapter 9. Programming the Disk Controller

MEMORY-WRITE ... e 30
MEMORY-READ ..o 31
MEMORY-EXECUTE ..ot 32
USER COMMANDS ..ot 32

APPENDIX B. DESCRIPTION OF ERROR MESSAGES

Whenever an error signal is generated, the LED light on the front panel of
the Enhancer 2000 will start flashing. The disk drive will not send the error mes-
sage to the computer unless requested. The following routing inputs the error
message and prints it on the computer’s screen.

10 OPEN15,8,5

20 INPUT # 15, A, AS, B, C§
30 PRINT A, AS, BS, C$

40 CLOSE 15

50 END

Below is a list and explanation of the error messages used on the Enhancer
2000 Disk Drive:

0: NO ERROR)
This is not an indication of an error and will occur when the error chan-
nel is read while the LED isn’t flashing.

l: FILES SCRATCHED
This also is not an error condition. Reading the error channel after one
or more files have been scratched will show this, as well as the number
of files that have been scratched.

2-19: UNUSED ERROR MESSAGE NUMBERS

20: READ ERROR (block header not found)
The disk controller is unable to detect a sync mark on the desired track.
Caused by misalignment of the read/write head or disk not present, un-
formatted, or not seated properly. Can also indicate a hardware failure.

21: READ ERROR (no sync character)
The disk controller is unable to detect a sync mark on the desired track.
Caused by misalignment of the read/write head or disk not present, un-
formatted, or not seated properly. Can also indicate a hardware failure.

22: READ ERROR (data block not present)
The disk controller has been requested to read or verify a data block that
was not properly written. This error message occurs in conjunction with
the BLOCK commands and indicates an illegal track and/or sector re-
quest.

23: READ ERROR (checksum error in data block)
This error message indicates that there is an error in one or more of the
data bytes. The data has been read into the DOS memory, but the
checksum over the data is in error. May also indicate grounding prob-
lems.

36

24:

25:

26:

27:

28:

29:

30:

31:

32:

33

34.

READ ERROR (byte decoding error)

The data or header has been read into the DOS memory, but a hardware
error has been created due to an invalid bit pattern in the data byte.
May also indicate grounding problems.

WRITE ERROR (write-verify error)
This message is generated if the controller detects a mismatch between
the written data and data in the DOS memory.

WRITE PROTECT ON

The controller has been requested to write a data block while the write
protect switch is depressed. Typically, this is caused by using a disk
with as write protect tab over the notch.

READ ERROR (checksum error in header)

There is an error in the header of the requested data block. The block
has not been read into the DOS memory. May also indicate grounding
problems.

WRITE ERROR (long data block)

The controller attempts to detect the sync mark of the next header after
writing a data block. If the sync mark does not appear within a pre-
determined time, the error message is generated. The error is caused by
a bad disk format (data extends into the next block) or by a hardware fai-
lure.

DISK ID MISMATCH

The controller has been requested to access a disk which has not been
initialized or has a bad header. Also occurs if disks are switched during
data transfer.

SYNTAX ERROR (general syntax)

The DOS cannot interpret the command sent to the command chan-
nel. Typically, this is caused by an illegal number of file names or pat-
terns that are illegally used.

SYNTAX ERROR (invalid command)
The DOS doesn’t recognize the command. The command must start in
the first position.

SYNTAX ERROR (long line)
The command sent is longer than 58 characters.

SYNTAX ERROR (invalid file name)
Pattern matching is used invalidly in the OPEN or SAVE command.

SYNTAX ERROR (no file given)
The file name was left out of a command or the DOS does not recognize
it as such. Typically, a colon (:) has been omitted.

37

35-38:

39:

40-49:

50:

51:

52:

53-59:

60:

61:

62:

63:

64:

NOT USED

SYNTAX ERROR (invalid command)
May result if the command sent to the command channel is unrecogni-
zable by the DOS.

NOT USED

RECORD NOT PRESENT

Result of disk reading past the last record through the INPUT # or
GET # commands. This message will also occur after positioning to a
record beyond the end of a file in a relative file. Ifthe intent is to expand
the file by adding the new record (with a PRINT # command), the error
message may be ignored. INPUT OR GET should not be used after this
error occurs without first repositioning.

OVERFLOW IN RECORD

PRINT # statement exceeds the record boundary, truncating informa-
tion. Since the carriage return, sent as a record terminator, is counted in
the record size, this message will occur if the total characters in the re-
cord (including the final carriage return) exceeds the defined size.

FILE TOO LARGE
Record position within a relative file indicates that disk overflow will re-
sult.

NOT USED

WRITE FILE NOT OPEN
A write file that has not been closed is being opened for reading, the se-
cond time.

FILE NOT OPEN
A file being accessed has not been opened in the DOS. Sometimes in this
situation, an error is not generated, the request is simply ignored.

FILE NOT FOUND
The requested file doesn’t exist on the indicated drive.

FILE EXISTS
The file name of the file being created already exists on the disk.

FILE TYPE MISMATCH

The file type does not match the file type in the directory entry for the
requested file.

38

65:

66:

67:

68,69:

70:

71:

72:

73:

74:

NO BLOCK

Occurs when a block to be allocated has already been allocated. The
parameters indicate the track and sector available with the next highest
number. Ifthe parameters are zero, then all blocks higher in number are
in use.

ILLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or sector which does not exist
in the format being used. May indicate a problem reading the pointer to
the next block.

ILLEGALSYSTEM TOR S
This special error indicates an illegal system track or sector.

NOT USED

NO CHANNEL (available)

The requested channel is not available, or all channels are in use. A
maximum of five sequential files may be opened at one time to the
DOS. Direct access channels may have six opened files.

DIRECTORY ERROR

The BAM (Block Availability Map) does not match the internal count.
There is a problem in the BAM allocation or the BAM has been over-
written in DOS memory. To correct this problem, reinitialize the disk
to restore the BAM in memory. Some active files may be terminated by
the corrective action.

DISK FULL
Either the blocks on the disk are used up or the directory is at its limit of
144 entries.

DOS MISMATCH

DOS 1 and 2 are read compatible but not write compatible. Disks may
be interchangeably read with either DOS, but a disk formatted on one
version cannot be written upon with the other version because the for-
mat is different. This error is displayed whenever an attempt is made to
write upon a disk which has been formatted in a non-compatible for-
mat. This message may also appear after power up.

DRIVE NOT READY

An attempt has been made to access the disk drive when there isn’t a
disk in the drive.

39

NOTES

Commodore is a registured Trade Mark of Commodore Business Machines, Inc.

40

MEMO

MEMO

FCC INFORMATION

This equipment generates and uses Radio Frequency Energy and if not installed and used properly, that is, in strict
accordance with manufactures instructions may cause interferance to radio and television reception. It has been type tested
and found to comply with the limits for a class B computing device in accordance with specifications in sub partJ of part 15 of
FCC Rules which are designed to provide reasonable protection against such interferance in a residential installation.
However there is no guarantee that interferance will not occur in a particular installation. If this equipment does cause
interferance to radio or television reception, which can be determined by turning the equipment off and on, the user is
encouraged to try Lo correct the interferance by one or more of the following measures. Reorient the receiving antenna.
Relocate the computer with respect to the receiver. Move the computer away from the receiver. Plug the computer into a
different outlet so that computer and receiver are on different branch circuits. If necessary, user should consult dealer or an
experienced radio or television technician for additional suggestions.

The user may find the following booklet prepared by the FCC helpful: ** How to Identify and Resolve Radio, Television
interferance problems™. This booklet is available from the U.S. Government Printing Office, Washington D.C. 20402
stock number 004-000-00345-4 .

0000 009000000000000009,7

SECOND
YEAR
EXTENDED
WARRANTY

“THE COMTEL GROUP™ warrants to the original consumer purchaser that its
ENHANCER2000 DISK DRIVE for Commodore computers shall he frec from
any defect in material or workmanship for a second year. This EXTENDED
SECOND YEAR WARRANTY Shall commence at the expiry of the initial
LIMITED ONE YEAR WARRANTY and be ineffect for a period of onc ycar. If
within this period of time a defect covered by this warranty occurs, the
ENHANCER 2000 Disk Drive unit should be returned to the place of purchasc or
contact “THE COMTEL GROUP™ for repair information. The cost of this
EXTENDED SECOND YEAR WARRANTY is $35.00. To validate your
EXTENDED SECOND YEAR WARRANTY you must return the filled out
warranty card along with a personat check, cashiers check or money order payable
to“THE COMTEL GROUP™ within fiReen(15) days of the original purchase
date.

£00000000000000000000000000000008000500050000800803055844

Manufactured
by
CHINON INDUSTRIES, INC.
in
Japan
Exclusively for
“THE COMTEL GROUP, INC.”
P.0O. Box 15485
Santa Ana, California 92705 USA
714-953-6165
TELEX 503727

Printed in Japan
85.11.6.5K(G)-0

