
FSD-2 5^r" FLOPPY

DISK DRIVE FOR

COMMODORE C64

TABLE OF CONTENTS

Page

1. Introduction 2

2. Specifications 3

3. Installation 5

Cable Connections 5

Turning On Power 5

Disk Insertion 5

4. Using Programs 6

Using Prepackaged Software 6

The Disk Directory 7

Pattern Matching and Wild Cards 8

5. Disk Commands ••••» 10

Reading the Error Channel , 13

6. Sequential Files 14

7. Random Files 16

8. Relative Files 20

Using Relative Files 21

9. Programming the Disk Controller • 25

10. Changing the Device Number ••.... 28

Software Method 28

Hardware Method 29

Appendices

A. Description of Error Messages 30

1. Introduction

The FSD-2 Disk Drive is a versatile and efficient disk drive

built for the Commodore series of personal computers. This drive

is fully compatible with the Commodore 64 computer and directly

replaces the Commodore 1541 Disk Drive, giving much better

performance in terms of data loading and writing speed and memory

buffer size*

If you are a beginner, the first few chapters will help you

install and operate the disk drive. As your skill and experience

improves, you will find more uses for your disk drive and the

more advanced chapters will be very helpful.

If you're an experienced professional, this manual can give

you the information you need to take advantage of all tne FSD-2

power and features.

Regardless of the level of your programming expertise, the

FSD-2 will greatly increase the efficiency and capability of your

computer system.

Please be aware that this manual is a reference guide to the

operation of the FSD-2 While it contains step by step

instructions and a section to let you easily use prepackaged

software, you should become familiar with BASIC and the computer

commands that help you operate your computer and its peripherals.

Remember, you don't need to learn everything in this manual

at once. The first three or four chapters will let you use the

disk drive for most applications, and the following chapters tell

you how to set up files, access any data, and program the disk

drive itself at the machine language level.

NOTES: In FORMAT examples, lower case words need to be

replaced by an appropriate word or number that you

choose•

2. SPECIFICATIONS

FSD-2 FLOPPY DISK DRIVE

♦Slim line construction (low profile) and fully Commodore

compatible.

♦Disk size: 5-1/4 inch diameter.

♦Capacity

Per Disk 174.8 kbytes

Directory Entries 144/disk

SectorArack 17-21

Bytes/Sector 256

Tracks • 35

♦Average NTBF rate of 8000 hours.

♦Power Requirements

Voltage 117 VAC, 220/230 240 VAC optional

Frequency 50/60 Hertz
Power Dissipation 24 Watts

♦Mechanical Dimensions

Height, width, depth 47.5 X150X268mm.

Weight 2.8 kgs.

FSD-2 FLOPPY DISK DRIVER

Figure 4. 1 frant panel

red- active

LED green- ready

flash- error

SERIAL BUS POWER ON

Figure 4.2 back panel

Please9 don't connect anything until you've completed the

following section9 otherwise you will get danger or take trouble

in your system.

3. INSTALLATION

CABLE CONNECTIONS

First, plug the power cable into the back of the disk drive.

It won't go. in if you try to put it in upside down. Next, plug

the other end into the electrical outlet. If the drive makes any

sound at this time, turn it off using the switch on the back! Do

not plug any other cables into the drive with the power on.

Second, plug the serial bus cable into either one of the

serial bus sockets on the back of the drive. Turn off the

computer and plug the other end of the cable into the back of the

computer. You're ready to go!

If you have a printer or another disk drive, attach its cable

to the remaining serial bus socket to "daisy chain" the devices.

If it's a disk drive, you will need to change one of the drives

device numbers.

TURNING ON THE POWER

When all the devices are hooked together, the power may be

turned on. It is important to turn them on in the correct order:

the computer is always last. Also: make sure there are no disks

in the disk drive when you turn on the power.

DISK INSERTION

To insert a disk, simply turn the lever to a horizontal

position, slide the disk in gently till it stops, and turn the

lever down. The disk goes in face up, with the large opening

going in first and the write-protect notch (a small square cutout

in the disk) on the left.

Never remove a disk when the drive light is on i And

remember, always remove the Disk before the drive is turned on or

off! Data c^n be destroyed by the drive at this time!

4. USING PROGRAMS

USING PREPACKAGED PROGRAMS

If you want to use a program already written on a disk, such

as a video game, here's all you have to do.

Turn the lever up and insert the preprogrammed disk so the

label on the disk is facing up and closest to you. There should

be, a little notch on the disk (maybe covered with tape) that

should be on the left. Turn the lever down. Now, type in LOAD

"program name" and hit the RETURN key. The disk will make noise

and your screen will say:

SEARCHING FOR PROGRAM NAME

LOADING

READY

When the screen says READY, just type in RUN and hit the

RETURN key- your program- is ready to use!

LOAD COMMAND

PURPOSE: To transfer a program from the disk to the

computer's current memory.

FORMAT: LOAD"program ,ameM, device #, command #

The program name is a character string, that is, either a

name in quotes or the contents of a given string variable. The

device number is preset on the disk drive's circuit board to be

8. If you have more than one drive, read the chapter on changing

the device number. This manual assumes you're using 8 as the

device number for the disk drive.

The command number is optional. If not given, or zero, the

program is loaded normally, into the start of your computer's

available memory for BASIC programs. If the number is 1, the

program will be loaded into exactly the same memory locations

from which it cane. The command number 1 is used mainly for

machine language, character sets, and other memory dependant

functions,

EXAMPLES: LOAD "TEST",8

LOAD "Program #1M,8

LOAD "Mach Lang",8,1

LOAD A$,J,K

CAUTION: Besides putting your program into the

computer's current memory, LOAD wipes out any previous

program there!

NOTE: As in the last example, you can use variables to

represent strings, device numbers, and command numbers;

just be sure they are all previously defined in your

program* Also, see the note on file names on page 9*

THE DISK DIRECTORY

Your disk drive is a random access device. This means the

read/write head of the drive can go to any spot on the disk and

access a single block of data, which hold up to 256 bytes of

information. There are 683 blocks on a disk.

Fortunately, you don't have to worry about individual blocks

of data (check chapter 5 if you do). There is a program in the

disk drive called the Disk Operating System, or DOS, that keeps

track of the blocks for you. It organizes them into a Block

Availibility Nap, or BAM, and a directory. The BAN is simply a

checklist of the blocks, and is updated every time a program is

SAVEd or a data file OPENed.

The directory is a list of all programs and other files

stored on the disk* There are 144 entries available, consisting

of information like file name and type, a list of blocks used,

and the starting block. Like the BAN, the directory is updated

each time a program is SAVEd or a file OPENed. However, the BAN

isn't updated until the file is CLOSEd. If not CLOSEd properly,

all data in that file will be lost. Nore on this later.

The directory can be LOADed into your computer memory just

like a BASIC program. Put the disk in the drive and type:

L0AD"$",8

The computer will say:

SEARCHING FOR $

FOUND $

LOADING

READY

Now the directory is in current memory, and if you type LIST

it will be displayed on the screen. To examine the directory

from inside a BASIC program, see chapter 6 concerning the GET#

statement.

PATTERN MATCHING AND WILD CARDS

To make LOADing easier, pattern matching lets you specify

certain letters in the program name so the first program in the

disk that matches your pattern is the one loaded.

EXAMPLES: LOAD "*",8 (LOADs first file on disk)

LOAD "TE*",8 (LOADs first file that starts with

TE)

LOAD "TE??",8 (LOADs first file that has four

letters and begins with TE)

LOAD "T?NT",8 (LOADs first file that has four

letters but could be TINT, TENT, et cetera)

The asterisk (*) tells the computer not to worry about the

rest of the name while the question mark (?) acts as a wild card.

The above can also be used when LOADing the directory into

current memory. This allows checking for a list of specific

programs. The procedure is the same as above except for the

addition of a "$:" :

EXAMPLE: LOAD "$:T?ST*",8 (LOADs all file names in the

directory that have the correct first, third, and

fourth letters)

SAVE

PURPOSE: Transfer a program in current memory onto the disk

for later use.

FORMAT: SAVE"program name", device #, command #

As before, the command number is optional. If there is

already a program or file by the same name on the disk or there

isn't enough room on the disk, an error signal will be generated.

If there isn't enough room, other programs will have to be erased

or use a different disk.

EXAMPLE: SAVE"HOMEWORK",8

SAVE AND REPLACE

PURPOSE: Replace an already existing file with a revised

version.

FORMAT: SAVE"§0:program name",8

If you edit an existing program and want to save, it under the

same name, SAVE AND REPLACE does so automatically. If you want

to keep the old version, save the new version under a different

name*

EXAMPLE: SAVE"@0:HOMEWORK",8

VERIFY

PURPOSE: Checks current program with one on the disk.

FORMAT: VERIFY"program name", device #, command #

VERIFY does a byte by byte comparison of the program in

current memory with one on the disk, as specified in the VERIFY

command.

EXAMPLE: VERIFY"OLD VERSION",8

NOTE ABOUT FILE NAMES: File names must begin with a

letter not a number. Spaces are permitted. While there

is no restriction on the length of a file name, all

commands must be 58 or fewer characters in length.

For example, in the above VERIFY command, there are 10

characters besides the actual program name, so the

maximum name length, in this case, is 48 characters.

5, DISK COMMANDS

So far, you have learned the simple ways of using the disk

drive. In order to communicate more fully with the disk, disk
commands need to be used. Two of these, OPEN and PRINT*, allow

the creation and filling of a data file on the disk. Just as

important is their ability to open a command channel, allowing
the exchange of information between computer and disk drive.

OPEN

PURPOSE: Creates a file by OPENing a communication channel

between computer and disk drive.

FORMAT: OPEN file #, device I, (command) channel #, text

string

The file number should be any number from 1 to 127. Numbers

from 128 to 255 can be used but should be avoided as they cause

the PRINT# statement to generate a linefeed after carriage

returns. The device number is usually 8.

The channel number can be any number from 2 to 15. These

refer to channels used to communicate with the disk, and channels

0 and 1 are used by the operating system for LOADing and SAVEing.

Channels 2 through 14 can be used to send data to files while

15 is reserved as the command channel.

The text string is a character string that is used as the

name for the file created. A file cannot be created unless the

file name is specified in the text string. If you attempt to

open a file already opened, the error signal "FILE OPEN ERROR"

will be generated.

10

EXAMPLES: OPEN 5,8,5, "TEST" (creates a file called TEST)

OPEN 15,8,15,"I" (sends command to disk on command

channel)

OPEN A,B,C,Z$ (these variables must be defined)

Fills a previously OPENed file with data.

PRINT# file !, text string

The PRINT! command works exactly like the PRINT command,

except the data goes to a device other than the screen, in this

case the disk drive. When used with a data channel, PRINT! sends

information to a buffer in the disk drive which then LOADs it

onto the disk. When used with a command channel, PRINT! sends

commands to the disk drive. The command is placed inside quotes

as a text string.

EXAMPLES: PRINT! 7,C$ (fills file 7 with text string C$)

PRINT! 15, "I" (sends disk command on command

(Channel)

INITIALIZE

PURPOSE: Initializes disk driver to power up condition.

FORMAT: OPEN 15,8,15, "I" or

OPEN 15,8,15 : PRINTH5, "I"

Sometimes, an error condition on the disk will prevent you

from performing an operation. INITIALIZE returns the disk drive

to its original state when power is turned on.

NEW

PURPOSE: Formats new disk or re-formats used one.

FORMAT: PRINT!15, "NEW 0: disk name, id!"

This command formats a new disk. It is also useful to erase

an already-formatted disk, as it erases the entire disk, puts

timing and block markers on, and creates the directory and the

BAM. The disk name is for user convenience while the id! is a 2

digit alphanumeric identifier that is placed in the directory and

every block on the disk. If you switch disks while writing data,

the drive will know by checking the id#.

EXAMPLES: OPEN 15,8,15, "NEW 0: TEST DISK, Al"

OPEN 15,8,15 : PRINT!15, "N 0:' MY DISK, MY"

11

If the disk needs erasing but not re forma11ing,• the same

command is used, but leave out the id#.

EXAMPLE: OPEN 15,8,15, "N 0: NEW INFO11

SCRATCH

PURPOSE: Erase a file or files from the disk.

FORMAT: PRINT#15, "SCRATCH 0: filename"

This command erases one or more files from the disk, making

room for new or longer files. Groups of files can be erased at

one time by naming all of them in one scratch command.

EXAMPLES: PRINT#15,"S 0: TEXT" (erases file called TEXT)

PRINT#15,"SCRATCH0: TEXT, 0:TEST, 0: MUSIC"

(erases files TEXT, TEST, and MUSIC)

COPY

PURPOSE: Duplicate an existing file.

FORMAT: PRINTi.15, "COPY 0:newfilename=0 : oldf ilenar.e"

COPY allows you to make a copy of any program or file on the

disk. The new file's name must be. different from the old one.

COPY can also combine up to four files into one new one.

EXAMPLES: PRINT#15,"C 0:BACKUP=0 : ORIGINAL"

PRINT#15,"COPY 0 :NEWFILE = 0: OLD1,0: OLD2,0"

(combines OLD1 and OLD2 into NEWFILE)

RENAME

PURPOSE: Change the name of existing file.

FORMAT: PRINT#15#"RENAMEO: newname=0: oldname"

This command lets you change the name of a file once it's in

the disk directory. RENAME will not work on any files that are

currently open.

EXAMPLE: PRINT#15,HR 0:GOODNAME=0: DUMBNAME"

VALIDATE

PURPOSE: Removes wasted spaces on disk.

FORMAT: OPEN 15,8,15,"V0:"

12

After a disk has -had many files saved and erased, small gaps

in the data begin to accumulate and waste memory space on the

disk. VALIDATE reorganizes your disk so you can get the most

memory from the available space. Also, this command removes

files that were OPENed but never properly CLOSEd.

CAUTION! VALIDATE erases random files (see chapter 7).

If your disk contains random files, DO NOT use this

command!

READING THE ERROR CHANNEL

Without the DOS Support Program, there is no way to read the disk

error channel since you need to use the INPUT# command, unusable

outside a program. Here is a simple BASIC program to read the

error channel:

10 OPEN 15,8,15

20 INPUT#15, A$, B$, C$, D$

30 PRINT A$, B$, C$, D$

When you use an INPUT# from the command channel, you read up

to four variables that describe the error condition. The first,

third, and fourth are numbers so numberic variables can be used.

The inputs are organized as follows:

First: error number (0 means no error).

Second: error description.

Third: track number where error occurred.

Fourth: block (sector) in track where error occurred.

Errors on track 18 concern the BAM and directory.

CLOSE

PURPOSE: Proper allocation of data blocks, closes entry.

FORMAT: CLOSE file#

This command is very important. Once a file that was opened

is no longer needed for data entry, IT. MUST BE CLOSED OR ELSE ALL

DATA IN THAT FILE WILL BE LOST.

It is very important that the data files be CLOSEd before the

error channel (channel #15) is CLOSEd, Otherwise, the disk drive

will CLOSE them for you but BASIC will still think they are open

and let you try to write to them. The error channel should be

OPENed first and CLOSEd last of all your files.

NOTE: If your BASIC program leads to an error

condition, all files are CLOSEd in BASIC, but not on the

disk drive. This is VERY DANGEROUS! Immediately type:

CLOSE 15: OPEN 15,8,15: CLOSE 15

This will re-initialize your drive and make all your

files safe.

13

6. SEQUENTIAL FILES

Sequential files are stored and read sequentially from

beginning to end. There are basically three different types of

sequential files that can be used. The first is the program

file, which is abbreviated in the directory as PRG. The PRG is

the only sequential file that can store and read programs. The

second file, sequential (SEQ), and the third file, user (USR),

are for data handling. These two files must be opened just like

the command channel in the last chapter.

OPEN

PURPOSE: Open a sequential file.

FORMAT: OPEN filet, device*, channel*, "0: name, type,

direction"

The file number is the same as in previous uses of the OPEN

command, the device number is usually 8, the channel number is a

data channel, 2 through 14. It's a good idea to use the same

number for both file and channel numbers, for easy remembering

(you may have noticed this in previous examples).

The name is the file name, for which no wild cards or pattern

matching may be used if you're creating a write file. The type

can be any one from the list below, or at least the first letter

of one. The direction must be READ or WRITE, or at least their

first letters.

FILE TYPE MEANING

PRG Program file

SEQ Sequential file

USR User file

REL Relative (not implemented in BASIC 2.0)

EXAMPLES: OPEN 5,8,5, "0: DATA, S, R"

OPEN A,B,C,"0:TEXT, P,W"

OPEN A,B,C,"0:" +A$+ "U,W" (OPENs a write file

with a name specified by the string variable A$)

OPEN 2,8,2 "(30: PHONES, S, W" (replaces old

version of the file with a new one)

Once a file has been opened for reading or writing, three

commands can be used to actually transfer the data. These

commands are PRINT*, INPUT*r and GET#.

14

PRINT#

PURPOSE: Directs output to previously opened file.

FORMAT: PRINT# file#, data list (no space allowed between

PRINT and *)

The PRINTf statement works exactly like PRINT: formatting

capabilities for punctuation and data types work just the same.

But that means you need to be careful when putting data into

files. The file number is the one just OPENed and the data list

consists of variables and/or^text inside quotation marks.

Care must be taken when writing in data so that it is as easy

as possible to read out later. Commas used to separate items

will cause spaces to be stored on the disk. Semi-colons will

keep spaces from being stored. If both commas and semi-colons

are absent, a carriage return (CR) will be stored at the end of

the data that is written in. Consider, the following example

program:

10 A$="THIS IS AH

20 B$="TEST"

30 OPEN 8,8,8, "0:TEST ,S,W"

40 PRINT#8,A$,B$"OF THE DISK"

50 CLOSE8

60 END

If you could see the data and its position on the disk, it

would look like this:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 i9 20 21 22 23 24 25
THISISA TESTOF

26 27 28 29 30 31 32 33 34 35

THE DISKCR eof (end of file)

The comma, semi-colon, and carriage return have special

meaning when stored to the disk. When used inside a string or

quotes, they will be stored as regular characters. When used as

a separator between fields, the comma inserts spaces (usually a

waste of memory), the semi-colon doesn't, and the CR stores a

carriage return on the disk. These are important when you use

GET# or INPUT# to retrieve the data you stored•

GET»

PURPOSE: To get data from the disk byte by byte,

FORMAT: GET# file #, variable list

Data comes in byte by byte, including CR's, commas, and other

separators. Ge-nerally, it's safer to use character string

variables to avoid error messages.

15

EXAMPLES: GET#8, A$

GET#5,. A (only works for numerical data)

GET#A, B$, C$, D$ (GETs more than one variable at

a time)

The GETf statement is very useful when the actual data

content or structure is not knownr such as a file on a disk that

has been damaged. If you are familiar with the file and there

are no problems, INPUT! is more efficient. But to look at data

in an unfamiliar or damaged file, the following example program

will read the contents out (in this case, from the file created

in the PRINTi example program).

10 OPEN 8,8,8,- "TEST"

20 GET#8,A$:PRINT A$;

30 IF ST=0 THEN 20 (ST is a status signal)

40 CLOSE 8

50 END

INPUT#

PURPOSE: Retrieve disk data in groups.

FORMAT: INPUT# file #, variable

The file number is the same as the one OPENed and the

variable can represent character strings or numbers. To read a

group of data, separators are needed to indicate the start and

finish of the group. These are the comma, semi-colon, and CR,

and work as explained in the section on the PRINT# command.

Numbers are stored with a space in front of them, which is empty

for positive numbers and contains a negative sign for negative

numbers. Here's a sample program:

10 OPEN 8,8,8,"@0: DATAFILE,S,W"

20 FOR A=l TO 10

30 PRINT#8,A

40 NEXT A

50 CLOSE 8

60 OPEN 2,8,2,"DATAFILE"

70 INPUT#2,B : PRINT B

80 IF ST=0 THEN 70

90 CLOSE 2

100 END

This example program will write the numbers 1 through 10 to a

sequential file called DATAFILE. Lines 70 and 80 will read the

data from the disk and print it out. See page 20 for two useful

sample programs.

16

7. RANDOM FILES

Sequential files are fine when you're just working with a

continuous stream of data, but some jobs need more flexibility.

For example, if you have a large mailing list, it would be

inconvenient to scan the entire list to find one person's

address. A random access meth.od would let you pick out the

desired data without having to read the whole file.

There are two file types that can do this: random files and

relative files. Random files are the best choice when speed is a

desired factor, as in machine language programs. This is

because locations of the data are maintained by the program when

random files are used, while relative file locations are

maintained by the DOS. The problem is random files are easy to

accidentally remove from the disk since the DOS doesn't maintain

them.

Random files are files that have been written to a certain

physical location on the disk. The disk is divided into 35

concentric rings, or tracks, with each track containing from 17

to 21 sectors.

TRACK NUMBER

1 TO 17

18 TO 24

25 TO 30

31 TO 35

SECTOR RANGE

0 TO 20

0 TO 18

0 TO 17

0 TO 16

TOTAL SECTORS

21

19

18

17

It is possible to read and write to any block on the disk, as

well as determine which blocks are available for use. The

following commands explain how to use the random file functions.

OPEN

PURPOSE: OPENs a data channel for random access.

FORMAT: OPEN file 4, device #, channel #, "#"

When working with random files, you need to have two channels

open to the disk: the command channel (15) to send commands and

a data channel (2 to 14) for the data transfer. The data channel

for random access files is OPENed by selecting the pound sign,

"#", as the file name.

The additional n#" on the end of the command causes the disk

to allocate a 256 byte buffer for the purpose of handling the

desired block of data. If a buffer number is specified, the

allocated buffer will be the one you specified.

EXAMPLES: OPEN 5,8,5,"#" (you don't care which buffer)

OPEN A,B,C,"#2lf (you specify buffer 2)

17

BLOCK-READ

PURPOSE: To read a specific block of data from the disk.

FORMAT: PRINT! file #,"BLOCK-READ:" channel #, drive #,

track !, block # (BLOCK-READ can be replaced with

B-R)

The file and channel numbers are ones that have been OPENed.

The track number and block number indicate which 256 byte block

is to be read. Executing this command causes the disk drive to

move the specified block of data into the buffer area. The data

can then be read from the buffer area using either INPUT! or

GET#. Only data in that particular block will be read, and any

unused bytes in the block will not be read* The sample program

below uses BLOCK-READ to read the contents of block 9 on track 5

and display the block's contents on the screen.

10 OPEN 15f8r15

20 OPEN 8,8,8,"!"

30 PRINT!15, "B-R:"8,0f5,9 (reads block into buffer)

40 GET!8, A$

50 PRINT A$;

60 IF ST=0 THEN 40

70 PRINT "READ. COMPLETE"

80 CLOSE 8 : CLOSE 15

.BLOCK-WRITE

PURPOSE: Write a block of.data to a specified block location

on the disk.

FORMAT: PRINT! file #, "BLOCK-WRITE:11 drive #, channel !,

track !, block !

BLOCK-WRITE can be shortened to B-W. This command causes

data previously stored in the buffer to be written to the

specified location on the disk. The data should be transferred

to the buffer on a data channel using PRINT! before

BLOCK-WRITEing it into the disk. The DOS keeps track of how many

bytes are stored into the buffer and stores the byte count into

the first byte of the block when BLOCK-WRITE is executed. This

means that only 255 bytes can actually be written to or read from

the block, since the byte count uses the first byte of the block.

Here's an example of a routine that will write data to the same

block that is read in the BLOCK-READ example above (track 5,

block 9):

10 OPEN 15,8,15

20 OPEN 8,8,8,"!"

30 FOR AA=1 TO 32

40 PRINT!8, "TESTING"

50 NEXT

60 PRINT!15f"B-W:" 8;0>5,9

70 CLOSE8 : CLOSE15

18

BLOCK-ALLOCATE

PURPOSE: Determine if a particular block is free and

allocate it if so.

FORMAT: PRINT#15,"B-A:" channel #,drive #, track », block *

As mentioned earlier, the DOS does not maintain the disk when

BLOCK-READs and BLOCK-WRITEs are used. But the user can make

sure a particular block is available by using the BLOCK-ALLOCATE

command. This allows use of BLOCK commands on a disk with files

already on it. By checking the BAM, the command aetermines if

the specified block has been used. Since the BAM updates each

time a file is stored on the disk, files can be maintained.

BLOCK commands do not update the BAM and so will not be

recognized unless a BLOCK-ALLOCATE has been executed. CAUTION:

the VALIDATE command does not recognize random files and should

never be used on a disk that has random files.

If BLOCK-ALLOCATE determines that the specified block has

already been used, an error signal (65) will be generated. The

error message tells you the numbers of the next available track

and block on the disk. This block does not get allocated, so the

BLOCK-ALLOCATE command must be used again, but this time you can

be sure that the block specified is free to use. The following

program will allocate a block and write to that block. If the

block is already used, it will write to the next available one,

as indicated by the error message. c

10 OPEN 15,8,15:OPEN 8,8,8,"#"

20 PRINT#8,"THIS GOES INTO THE BUFFER"

30 T=5 : S=9

40 PRINT#15,"B-A:M0,T,S

50 INPUT#15,A,A$,B,C

60 IF A=65 THEN T=B:S=C: GOTO 40

70 PRINT#15,"B-W:" 8,0,T,S

80 PRINT"DATA WAS STORED IN TRACK:"T," SECTOR:"S

90 CLOSE 8:CLOSE 15

100 END

Line 20 loads the buffer with text, lines 30 and 40 check

block 9 on track 5 to see if it's free, and line 50 inputs the

error signal. If the block is free, the data is stored there.

If block 9 on track 5 is already used, line 60 takes the new

block and track numbers and allocates the block they specify, and

then the data is stored in the new block. Lines 70 and 80 read

the track and b]ock numbers into the computer and print them on

the screen.

19

8. RELATIVE FILES

Relative files can access any piece of data on the disk, just

like random files, but you don't have to maintain the files in

your own program* The DOS maintains the data for you, keeping

track of the status of your files. Because of this, relative

files are slower than random files, but often the extra

convenience makes up for this.

The DOS keeps track of the tracks and sectors (blocks) used,

and even allows records to overlap from one block to the next.

It does this be establishing side sectors, a series of pointers

for the beginning of each record. There can be 6 side sectors in

a file, and each side sector can point to up to 120 records.

This means a file can have as many as '720 records, and since each

record can be 254 characters long, one file can fill the entire

disk.

The block format consists of the first two bytes specifying

the track and sector of the next data block. The next 254 bytes

contain the actual data. Any empty record will have FF

(hexidecimal for all l's) in the first byte and 00 in the rest of

the record. The side sectors are used to reference all side

sector locations, not just the 120 data block locations related

to that side sector. On the next page you will find a chart

showing the format of the relative files.

20

RELATIVE FILE FORMAT

DATA BLOCK:

BYTE DEFINITION

0,1 ...••.. Track and sector of next data block.

2-256 254 bytes of data. Bipty records contain FF (all

binary ones) in the first byte followed by 00 to

the end of the record. Partially filled records

are padded with nulls (00).

SIDE SECTOR BLOCK:

BYTE DEFINITION

0,1 •• Track and sector of next side sector block.

2 Side sector number (0-5).

3 ••«••••• Record length.

4,5 Track and sector of first side sector (0).

6,7 Track and sector of second side sector (1),

8,9 Track and sector of third side sector (2).

10,11 Track and sector of fourth side sector (3).

12,13 Track and sector of fifth side sector (4).

14,15 Track and sector of sixth side sector (5).

16-256 Track and sector pointers to 120 data blocks.

USING RELATIVE FILES

Relative files are created the first time they are OPENed.

That same file will be used until it is CLOSEd. A relative file

can only be erased from a disk by using the SCRATCH command or by

re-formatting the entire disk. The "§" sign, used with SAVE as a

SAVE and REPLACE, will not work with relative files.

FORMAT TO CREATE RELATIVE FILE:

OPEN file #, device #, channel #, "0:name,L," ♦ CHR$(rl#)

(record length)

21

EXAMPLES:

OPEN 2,8,2,"0:FILE,L"+CHR$(100) (record length is 100)

OPEN F,8,F,"0:" +A$+ ",L,"+CHR$(Q)

FORMAT TO OPEN EXISTING RELATIVE FILE:

OPEN file #, device #, channel #, w0:name"

EXAMPLE:

OPEN 2,8,6, "0: TEST"

V

In this case, the DOS can tell by the syntax that it is a

relative file. Both of the above formats allow either reading or

writing to the file.

HOWEVER: In order to read or write, BEFORE ANY OPERATION,

you must position the file pointe'r to the correct record

position*

POSITION

PURPOSE: To POSITION the file pointer at a record.

FORMAT: PRINT* file#,"P" CHR$(channel*)CHR$(rec# lo)

CHR$(rec# hi*)CHR$(record position)

NOTE: CHR$(record position) specifies the location

within the record itself and is optional.

Since there are 720 records available and the largest number

one byte can hold is 256, two bytes must be used to specify the
position. The rec#lo contains the least significant part of the

address and reclhi hold the most significant. The relationship

is represented by: reel * rec#hi * 256 ♦ rec#lo. The rec# is
the actual position in a record where data transfer starts.

EXAMPLES: PRINTI15,"PHCHR$(2)CHR$(1)CHR$(0)

PRINTI15,"PWCHR$(CH)CHR$(Rl)CHR$(R2)CHR$(P)

Here's a sample program that creates a relative file:

10 OPEN 15,8,15

20 OPEN 8,8,8,"0:TEST,L,w + CHR$(50)

30 PRINT#15,ttP"CHR$(8)CHR$(0)CHR$(4)CHR$(l)

40 PRINT#8,CHR$(255)

50 CLOSE8:CLOSE15

22

This program creates a relative file called TEST that will

contain records that are 50 bytes long. Line 30 moves the

pointer to the first position in record #1024 (rec# = 256 * 4+0

= JL024). Notice that the POINTER command is sent on the command

channel while data is sent on a data channel, 8 in this case.

Since the record didn't already exist, an error message will be

generated, warning you not to use GET# or INPUT#.

Once a relative file exists, you can OPEN it and expand it or

access it for data transfer. The file can be expanded but the

record length cannot be changed. To expand a file just specify a

larger number of records, as in Line 30 in the previous example

program. To write data to an existing relative file use the

following:

10 OPEN 15,8,15

20 OPEN 2,8,6,"0:TEST"

30 GOSUB 1000

40 IF A=100 THEN STOP

50 PRINT#15,MP"CHR$(6)CHR$(100)CHR$(0)CHR$(l)

60 GOSUB 1000

70 IF A=50 THEN PRINT#2,1:GOTO50

80 IF A=100 THEN STOP

90 PRINT#2,"123456789"

100 PRINT#15,"P"CHR$(6)CHR$(100)CHR$(0)CHR$(20)

110 PRINT#2, "JOHN QWERTY"

120 CLOSE 2:CLOSE15

130 END

1000 INPUT#15,A,A$,B$,C$

1010 IF (A=50) OR (A<20) THEN RETURN

1020 PRINT "FATAL ERROR:";

1030 PRINT A,A$,B$,C$

1040 A=100:RETURN

Lines 10 and 20 open the command and a data channel.

Lines 30 and 40 check for errors.

Line 50 moves the file pointer to the 100th record position.

Since no records exist yet, an error signal is generated.

Lines 60, 70, and 80 check for the error and create 100

records.

Line 90 writes 9 bytes of data to the first 9 locations in

record 100.

Line 110 then prints a name from that position.

It is important that data is wrltt.en into the record

sequentially so data already in the record is not destroyed.

23

The following program reads back the data put in the file by
the previous program.

10 OPEN 15,8,15

20 OPEN 2,8,6,"0:TEST"

30 GOSUB 1000

r 40 IF A*=100 THEN STOP

50 PRINT#15,"P"CHR$(6)CHR$(100)CHR$(0)CHR$(l)
60 GOSUB 1000

70 IF A=50 THEN PRINT A$

80 IP A=100 THEN STOP

90 INPUT!2,D$: PRINT D$

100 PRINT#15,"P"CHR$(6)CHR$(100)CHR$(0)CHR$(20)
110 INPUT#2,E$: PRINT E$

120 CLOSE 2:CLOSE15

130 END

1000 INPUT#15,A,A$,B$,C$

1010 IF (A=5O) OR (A<20) THEN RETURN

1020 PRINT "FATAL ERROR:";

1030 PRINT A,A$,B$,C$

1040 A=*100: RETURN

Lines 90, 100, and 110 read the record and display the

contents on the screen. Notice that the carriage return sent to

the disk after each PRINT# statement on the write routine is the

separator for each field on the record.

If the file is to be written or read sequentially, it isn't

necessary to adjust the pointer to each record. The record

pointer automatically starts at Position 1 if no other position

has been defined. The pointer moves through the record as each

field is read or written.

24

9, PROGRAMMING THE DISK CONTROLLER

The FSD-2 is a smart peripheral, which means that it contains

its own microprocessor and memory. An advanced programmer can

access the microprocessor and its memory, providing a wide range

of applications. Routines can be designed that reside in the

disk memory and operate on the microprocessor to control disk

drive operation. DOS programs can be added that come from the
actual disk.

There is 16K of ROM in the disk drive as well as 2K RAM. The/

most useful area to the advanced programmer is the buffer RAJ^SfS*
area located between 4000H and 5FFFH (the H means it's ^^^W'
hexadecimal number). This area can actually be written into witri

Machine Language level instructions and executed by the disk

controller (microprocessor). %

The method of handling data transfers to and from memory are

referred to as MEMORY commands. There are three basic MEMORY

commands, and some additional commands called USER commands.

MEMORY-WRITE

PURPOSE: Transfers up to 34 bytes of data to drive memory.

FORMAT: PRINT#15,"M-W:"CHR$(address low byte)

CHR$(address high byte)CHR$(# of characters)

CHR$(data)

MEMORY-WRITE allows you to write up to 34 bytes of data at a

time into the disk controller's memory. MEMORY-EXECUTE AND USER

commands can be used to run this code. The low and high bytes

are the decimal equivalent of the hexadecimal address in the

actual memory space. The number of bytes is the decimal amount

of bytes to be transferred, up to 34. The d^ata must be the

decimal representation of the hexadecimal-coded instruction you

wish sent. See the example below.

10 OPEN 15,8,15

20 PRINT#i5,"M-W:"CHR$(0)CHR$(112)CHR$(3)CHR$(169)CHR$(8)CHR$(96)

30 CLOSE 15

This routine writes three bytes to locations 7000H, 7001H,

and 7002H (256*112 + 0 = 28672 = 7000H). The three bytes are:

169 (A9H, a PAGE ZERO instruction),

8 (8H, a location),

96 (60H, a RETURN instruction). When executed, this program

would cause the drive controller to load its accumulator with the

contents of location 0008H and then return control back to the

disk drive.

25

MEMORY-READ

PURPOSE: Read data from drive memory.

FORMAT: PRINT#15 file #, -M-R:" CHR$(address low byte)

CHR$(address high byte)

The MEMORY-READ command selects a byte to be read from a

location in the disk drive memory, specified by the low and high

bytes of the location address. The next byte read (using GET#)

from channel #15 will be from the specified memory location. The

following example illustrates this by reading data from 10

consecutive bytes, located from FFOOH to FFOAH (in decimal, 65280

to '65290).

10 OPEN 15,8,15

20 FOR A = 1 TO 10

30 PRINT#15,"M-R:"CHR$(A)CHR$(255)

40 GET#15,A$:PRINT ASC(A$ ♦ CHR$(0));

50 NEXT

60 CLOSE 15

When using MEMORY-READ, any use of INPUT# on the error

channel will give peculiar results. This can be cleared up by

using any other command, except the MEMORY commands. Here's a

useful program that reads the disk controller's memory:

10 OPEN 15,8,15

20 INPUT-LOCATION PLEASE";A

30 Al = INT(A/256) : A2 = A - Al*256

40 PRINT#15,"M-R:"CHR$(A2)CHR$(A1)

50 FOR L = 1 TO 5

. 60 GET#15,A$

70 PRINT ASC(A$ + CHR$(0))

80 NEXT

90 INPUT-CONTINUE-;A$

100 IF LEFT$(A$,1)«"Y" THEN 50

110 GOTO 20

MEMORY-EXECUTE

PURPOSE: Executes program in disk memory.

FORMAT: PRINT!15 file *9-M-E:"CHR$(address low byte)

CHR$(address high byte)

Once a program has been loaded into disk memory (either the

16K in the ROM or the 2K in the RAM), the address of the MEMORY-

EXECUTE command specifies where program execution will begin.

The use of this commmand requires that the program to be executed

end with an RTS instruction, so control will be returned to the

DOS. Following is a routine that writes an RTS (ReTurn from

Subroutine).

26

10 OPEN 15,8,15,"M-W:"CHR$(0)CHR$(5);l;CHR$(96)
20 PRINT#15,"M-E:"CHR$(0)CHR$(19): REM JUMPS TO BYTE, RETURNS
30 CLOSE 15

USER COMMANDS

Along with the USER1 and USER2 commands discussed in chapter
7f there are others that, when executed, cause jumps to specific
locations in the disk drive's buffer. This lets you make longer
routines that operate in the disk's memory along with a jump
table, even in BASIC.

USER COMMAND FUNCTION

Ul or UA BLOCK-READ without changing buffer-pointer
U2 or UB BLOCK-WRITE without changing buffer-pointer
U3 or UC jump to 0500H

U4 or UD jump to 0503H

U5 or UE jump to 0506H

U6 or UP jump to 0509H

U7 or UG jump to 050CH

U8 or UH jump to 050FH

U9 or UI jump to FFFAH

U; or UJ power-up vector

UI+ set Commodore 64 speed
U- set VIC 20 speed

EXAMPLES OF USER COMMANDS

PRINT#1S,"U3"

PRINT#15,"U"+CHR$(50+Q)

PRINT#15,"UI"

27

10-1. CHANGING THE DEVICE NUMBER

All peripherals need device numbers so the computer can

identify which one you want to transfer data to or from. The

FSD-2 is preset inside the hardware with a device number of 8,

drive number 0. The disk knows its own device number by looking

at a hardware jumper on the circuit board and writing the number

based on the jumper into a section of its RAN*

The device number,can be changed by two methods, hardware and

software. If you are temporarily using two disk drives, using

the software method lets you change one drive's device number

temporarily. If you expect to use two (or more) drives on a

permanent basis, the hardware method is a simple and permanent

way to change a drive's device number.

SOFTWARE METHOD

The device number is changed by performing a MEMORY-WRITE to

locations 0077H and 0078H. The command is executed once the

command channel has been opened.

FORMAT: PRINT# file #, "M-W: "CHR$(119)CHR$(0)CHR$(2)

CHR$ (address + 32)CHR$(address + 64)

The address is the new device number desired. Below is an

example of changing the device number to 9.

10 OPEN 15,8,15
20 PRINT#15,"M-W:"CHR$(119)CHR$(0)CHR$(2)CHR$(9+32)CHR$(9+64)

30 CLOSE 15

First, turn on one drive and change its device number, then

the next drive, until all the drives are on.

28

10-2. CHANGING THE DEVICE NUMBER

All peripherals need device numbers so the computer can

identify which one you want to transfer data to or from. The

FSD-2 s device number is extremely easy to change. No hardware

or software modifications are needed. Just set the DIP switches

on the bottom of the drive to change the drive's device number.

Detailed instructions are below.

TO CHANGE THE DEVICE NUMBER:

1. TURN OFF DISK DRIVE.

2. TURN OVER AND LOCATE TWO SMALL DIP SWITCHES ABOUT HALFWAY

TOWARDS THE BACK.

3. SET SWITCHES IN COMBINATION WHICH GIVES DESIRED DEVICE NUMBER.

"ON" IS TOWARDS THE BACK OF THE DRIVE.

DEVICE NUMBER SELECTED BY:

DEVICE NUMBER: 8 9 10 11

SWITCH 1: ON OFF ON OFF

SWITCH 2: ON ON OFF OFF

4. DISK DRIVE IS NOW READY TO USE WITH NEW DEVICE NUMBER.

29

APPENDIX B. DESCRIPTION OF ERROR MESSAGES

Whenever an error signal is generated, the LED light on the

front panel of the 'FSD-2 will start flashing. The disk drive

will not send the error message to the computer unless requested.

The following routine inputs the error message and prints it on

the computer's screen.

10 OPEN 15,8,5

20 INPUT#15,A,A$,B$,C$

30 PRINT A,A$,B$,C$

40 CLOSE 15

50 END

Below is a list and explanation of the error messages used on

the FSD-2 Disk Drive:

0: NO ERROR

This is not an indication of an error and will occur

when the error channel is read while the LED isn't

flashing.

1: FILES SCRATCHED

This also is not an error condition. Reading the error

channel after one or more files have been scratched will

show this, as well as the number of files that have been

scratched.

2-19: UNUSED ERROR MESSAGE NUMBERS

20: READ ERROR (block header not found)

The disk controller is unable to locate the header of

the requested block. This can be caused by a bad header

on the disk or specifying an illegal sector number.

21: READ ERROR (no sync character)

The disk controller is unable to detect a sync mark on

the desired track. Caused by misalignment of the read/

write head or disk not present, unformatted, or not

seated properly. Can also indicate a hardware failure.

22: READ ERROR (data block not present)

The disk controller has been requested to read or verify

a data block that was not properly written. This error

message occurs in conjunction with the BLOCK commands

and indicates an illegal track and/or sector request.

23: READ ERROR (checksum error in data block)

This error message indicates that there is an error in

one or more of the data bytes. The data has been read

into the DOS memory, but the checksum over the data is

in error. May also indicate grounding problems.

30

24: READ ERROR (byte decoding error)

The data or header has been read into the DOS memory,

but a hardware error has been created due to an invalid

bit pattern in the data byte. May also indicate

grounding problems.

25: WRITE ERROR (write-verify error)

This message is generated if the controller detects a

mismatch between the written data and data in the DOS

memory.

26: WRITE PROTECT ON

The controller has been requested to write a data block

while the write protect switch is depressed. Typically,

this is caused by using a disk with a write protect tab

over the notch.

27: READ ERROR (checksum error in header)

There is an error in the header of the requested data

block. The block has not been read into the DOS memory.

May also indicate grounding problems.

28: WRITE ERROR (long data block)

The controller attempts to detect the sync mark of the

next header after writing a data block. If the sync

mark does not appear within a pre-determined time, the

error message is generated. The error is caused by a

bad disk format (data extends into the next block) or by

a hardware failure.

29: DISK ID MISMATCH

The controller has been requested to access a disk which

has not been initialized or has a bad header. Also

occurs if disks are switched during data transfer.

30: SYNTAX ERROR (general syntax)

The DOS cannot interpret the command sent to the command

channel. Typically, this is caused by an illegal number

of file names or patterns are illegally used.

31: SYNTAX ERROR (invalid command)

The DOS doesn't recognize the command. The command must

start in the first position.

32: SYNTAX ERROR (long line)

The command sent is longer than 58 characters.

33: SYNTAX ERROR (invalid file name)

Pattern matching is used invalidly in the OPEN or SAVE

command.

31

34: SYNTAX ERROR (no file given)

The file name was left out of a command or the DOS does

not recognize it as such. Typically, a colon (:) has

been omitted.

35-38: NOT USED

39: SYNTAX ERROR (invalid command)

May result if the command sent to the command channel is

unrecognizable by the DOS.

40-49: NOT USED

50: RECORD NOT PRESENT

Result' of disk reading past the last record through the

INPUT* or GET# commands. This message will also occur

after positioning to a record beyond the end of a file

in a relative file. If the intent is to expand the file

by adding the new record (with a PRINT# command), the

error message may be ignored. INPUT or GET should not

be used after this error occurs without first

repositioning.

51: OVERFLOW IN RECORD

PRINT* statement exceeds the record boundary, truncating

information. Since the carriage return, sent as a

record terminator, is counted in the record size, this

message will occur if the total characters in the record

(including the final carriage return) exceeds the

defined size*

52: FILE TOO LARGE

Record position within a relative file indicates that

disk overflow will result.

53-59: NOT USED

60: WRITE FILE NOT OPEN

A write file that has not been closed is being opened

for reading.

61: FILE NOT OPEN

A file being accessed has not been opened in the DOS.

Sometimes in this situation, an error is not generated,

the request is simply ignored.

62: FILE NOT FOUND

The requested file doesn't exist on the indicated drive.

63: FILE EXISTS

The file name of the file being created already exists

on the disk.

32

64: FILE TYPE MISMATCH

The file type does not match the file type in the

directory entry for the requested file.

65: NO BLOCK

Occurs when a block to be allocated has already been

allocated. The parameters indicate the track and

sector available with the' next highest number. If the

parameters are zero, then all blocks higher in number

are in use.

66: ILLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or sector which

does not exist in the format being used. May indicate

a problem reading the pointer to the next block.

67: ILLEGAL SYTEM TORS

This special error indicates an illegal sytem track or

sector.

68,69: NOT USED

70: NO CHANNEL (available)

The requested channel is not available, or all channels

are in use. A maximum of five sequential files may be

opened at one time to the DOS. Direct access channels

may have six opened files.

71: DIRECTORY ERROR

The BAM (Block Availability Map) does not match the

internal count. There is a problem in the BAN

allocation or the BAM has been overwritten in DOS

memory. To correct this problem, reinitialize the disk

to restore the BAM in memory. Some active files may be

terminated by the corrective action.

72: DISK FULL

Either the blocks on the disk are used up or the

directory is at its limit of 144 entries.

73: DOS MISMATCH

DOS 1 and 2 are read compatible but not write

compatible. Disks may be interchangeably read with

either DOS, but a disk formatted on one version cannot

be written upon with the other version because the

format is different. This error is displayed whenever

an attempt is made to write upon a disk which has been

formatted in a non-compatible format. This message may

also appear after power up.

74: DRIVE NOT READY

An attempt has been made to access the disk drive when

there isn't a disk in the drive.

33

