
 

 

DIAG264 
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This document describes the purpose and operation of the 264 series diagnostic tool and harness. It can 

be used to assist in the identification of faults with RAM, ROM, I/O & CPU ports, and TED registers. It has 

been tested on a wide range of 264 series (aka TED) machines, including some non-standard 

configurations and PAL and NTSC machines. This includes the C116, Commodore 16, C232 and Plus/4, 

and even a V364! 
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As soon as one undoes the screws and lifts up the lid on an old 8-bit machine, there is an element of risk 

involved. To use this diagnostic tool in its most effective form, it requires replacing the kernel ROM in the 

machine and attaching loop-back connectors to the interface ports of your machine. The TED chip 

especially is sensitive to abuse and the built in latch register is easily broken by stray voltages and static. 

Although I describe how to build such connectors that I have successfully used myself, they are not required 

to test the keyboard and joysticks if you don’t need to run the tests unattended. Diag264 does provide 

features to manually test the keyboard and joysticks and to bypass them to allow the rest of the tests to run 

unattended. As keyboard and joystick problems are not usually intermittent in nature, this should not be an 

issue for most users. 

If you do choose to build loop-back connectors for the keyboard or joysticks, I will provide any guidance 

that I can, but please understand that you do so at your own risk. 

BACKGROUND 

I acquired or built most of Commodore's official diagnostic cartridges and harnesses for the 64, VIC-20 and 

C128, which they sold to service centres, mainly to help me fix the growing pile of computers I’d acquired. 

Fixing them became somewhat an obsessive-compulsive habit, and I could not bear having broken 

machines lying around. In amongst them I had a C16 and two Plus/4’s, only one of which worked. I started 

searching around for a diagnostic cartridge for the 264 series but with no luck. I knew Commodore had 

definitely made one, but I could not track it down. Finally, I found an image of one on Plus4World, but as I 

never got any response from the owner, I decided that my only choice was to build my own. 

DESIGN AND THEORY OF OPERATION 

The design and operation of Diag264 is modelled closely on the operation of the cartridges available for 

the 64/128 and VIC-20. One of the aspects that I was most keen to copy was the functionality of the Dead 

Test Cartridge of the 64. The primary use of this cartridge was to find RAM issues in a machine that 

otherwise appeared dead. 

The majority of Commodores later 8-bit offerings used DRAM chips in either a 64k x 1 or 16k x 4 

configuration. This usually meant that any dead RAM chip would make the machine completely inoperable, 

as the zero page ($0002-$00FF) and stack ($0100-$01FF) are rendered practically unusable. The kernal 

start-up routines in both the 64 and 264's make extensive use of the ZP and implicitly rely on the stack upon 

the first execution of an RTS instruction. This presents a problem for any normal cartridge based diagnostic 

tool because we are dependent on the kernal to hand over control to the cartridge ROM. 

The Dead Test cartridge avoids this problem by making use of the 64's Ultimax mode, which was a legacy 

from the MAX Machine, a cartridge only based console system which was a subset of the later 64’s 

architecture. The Ultimax compatibility mode enables an external cartridge ROM to replace the Kernal of 

the host machine and therefore bypass the normal start-up routines, making it a superior tool for identifying 

RAM problems on an otherwise ‘dead’ system. 

http://plus4world.powweb.com/home


The 264 architecture does not include any way of auto-booting into an external ROM without trying to pull 

some dirty tricks with the address lines, so it becomes a trade-off between the convenience of a cartridge 

versus the extra benefits of booting straight into the diagnostic. Not being a fan of compromise, the Diag264 

ROM can be compiled for either cartridge or kernal. 

The kernal option is a simple drop in replacement of the kernal ROM, which is the 28-pin ROM chip with 

the identifier beginning with 318004 (PAL) or 318005 (NTSC.) The cartridge option involves either 

sacrificing a standard commercial Commodore C16/Plus cartridge (I used Strange Odyssey) or you can 

purchase 264 compatible cartridge blank from a couple of sellers on EBay. 

If you choose to use a cartridge, you will need to remove the ‘low’ ROM and install a 28-pin DIL socket in 

its place. With the edge connector facing towards you, this is the socket on the left. The image in Figure 1, 

which is my own cartridge, also has a socket in the ‘high’ ROM position, on the right. This is not required 

for DIag264. 

 

Figure 1 - Cartridge Mod 

The TED chip itself supports both NTSC and PAL standards, controlled by bit 6 of register $FF07. The only 

differences between NTSC and PAL machines are a different clock crystal and a slightly different kernal to 

correctly set the state of the PAL/NTSC bit, and also some other small modifications to take into account 

timing differences. 

When running from a cartridge, Diag264 queries the installed kernal to determine whether it should set 

NTSC or PAL mode by checking the value of $F33F, which contains the default value for TED register 

$FF07. The kernal version has no way to determine from software whether the base machine is NTSC or 

PAL, so the ROM image is available in versions which default to either NTSC or PAL. Nevertheless, for 

both the cartridge and kernal options, it is possible to override the default by holding down ‘P’ or ‘N’, as the 

machine is powered on, to force the software into PAL or NTSC respectively. If the keyboard  



 

LOOP-BACK CONNECTORS 

To determine the correct operation of the various I/O interfaces, a number of loop-back connectors are 

required. For a C16/C116/C232 you need a minimum of a serial port and cassette connector. For a Plus/4 

an additional user port loop-back is required to test the Asynchronous Communications Interface Adapter 

(ACIA) interface and the 6529 8-bit port. The ACIA is a 6551/8551 chip which provides the RS232 support 

via the user port. 

As mentioned above, it is also possible to construct connectors for the joystick ports and keyboard, but this 

is not an absolute requirement if the user is prepared to manually execute the keyboard and joystick tests. 

CASSETTE CONNECTOR 

The cassette connector is reasonably simple, requiring a 7 pin mini-din connector, two 330 ohm resistors 

and a few short lengths of wire. The diagram below is viewed looking at the rear/solder side of the plug. 

 

Figure 2 - Cassette Connector 

 

1. GND 

2. +5v 

3. Motor 

4. Read 

5. Write 

6. Sense 

7. GND 

 

The read line [4] is directly connected to the write line [5] while the two resistors form a voltage divider 

between the motor [3] and GND[7], with the resulting output being sufficient to pull the sense [6] line high 

when the cassette motor is activated. 

7 pin mini-din plugs can be sourced from most electronics retailers such as Maplins, Farnell or Digikey, 

although they can be rather fiddly to solder given the small pitch of the pins. It may be easier to find another 

lead with a 7-pin moulded plug pre-attached if you happen to have one to hand. A broken 1531 cassette 

unit is ideal. 

SERIAL CONNECTOR 



The serial connector is even simpler. As the data and clock lines are bi-directional, they are internally looped 

back, the only exception being the ATN line. The connector consists of a single link between the ATN [3] 

and Clock [4] line. The diagram below is viewed looking at the rear/solder side of the plug. 

 

Figure 3 - Serial Connector 

1. N/C (Plus/4 & C232), +5v (C16 & C116) 

2. GND 

3. ATN (Out) 

4. Clock (In/Out) 

5. Data (In/Out) 

6. Reset 

 

6 pin DIN plugs are in plentiful supply and much easier to solder as they usually have cups to hold the wire, 

so you shouldn’t have to sacrifice an IEC cable to make this. 

USER PORT CONNECTOR (PLUS/4 ONLY) 

The User port connector serves two purposes, firstly to test the 8-bit 6529 port, and secondly the 6551/8551 

ACIA RS232 interface. This is constructed using a 24-way edge connector with .156” spacing, the same as 

found on most other Commodore 8 bit machines. Again, the diagram below is viewed from the rear of the 

plug. This connector can again be sourced on-line from the usual electronics retailers, and also from the 

master of 8-bit C= hardware projects, Jim Brain. 

You need to make seven links, four linking ports 0-3 on the 6529 to ports 4-7, which requires joining [B] -> 

[6], [K] -> [7], [4] -> [J] and [5] -> [F] respectively. Then three connections looping back the signals for the 

ACIA. These are [C] -> [M], [D] -> [L] and [E] -> [H]. This basically implements a standard RS232 loop-

back, the only difference being that the plus/4 does not expose CTS on the user port. Further detail about 

RS232 loop-backs can be found in the datasheet for the equivalent W65C51N from the Western Design 

Center. (W65C51N Datasheet) 

A word of warning, please make sure you clearly label your connector ‘top’ and ‘bottom’ or, even better, 

insert the vertical keys between 1 & 2 and A & B  then 10 & 11 and L & M, as shown by the blue dotted 

lines in the diagram.  If you insert it upside down, you will short the 9V AC to the 5V DC line and you will fry 

something in your machine. 

http://store.go4retro.com/12-24-156-edge-connector/
http://www.westerndesigncenter.com/wdc/documentation/w65c51n.pdf


 

Figure 4 - User Port Connector

1. GND 

2. +5V 

3. /BRESET - Buffered Reset 

4. 6529 – P2 (also Cassette Sense) 

5. 6529 – P3 

6. 6529 – P4 

7. 6529 – P5 

8. RxC – Receive Clock 

9. ATN – IEC Attention 

10. 9V AC 

11. 9V AC 

12. GND 

A. GND 

B. 6529 – P0 

C. RxD – Receive Data 

D. RTS – Request to Send 

E. DTR – Data Terminal Ready 

F. 6529 – P7 

H. DCD – Data Carrier Detect 

J. 6529 – P6 

K. 6529 – P1 

L. DSR – Data Set Ready 

M. TxD – Transmit Data 

N. GND 

KEYBOARD LOOP-BACK 

If you do decide to build the keyboard loop-back, this is how I built mine. There are two basic types of 

connector used on the 264 series. The easy one is for the C16, which reuses the same style keyboard 

connector as the VIC-20/C64, albeit with a different layout, and uses a 20-pin SIL (single in-line) plug with 

a 0.1” (2.54mm) pitch. 

This plug is easy to build using a discarded 40-pin IDE cable from a PC hard drive which has the same 0.1” 

pitch. Although the plug is the same, the 80-pin IDE cables have each alternate conductor grounded to 

reduce crosstalk. As a result the signal wires are much finer and more difficult to work with, so you’re better 

off avoiding them. Peter Schepers has some info on preparing a similar plug for a Commodore 64 diagnostic 

harness here http://ist.uwaterloo.ca/~schepers/diagnostic.html but the basic process is to split out the odd 

numbered wires and cut the rest back close to the plug. Number 1 is usually marked by a different colour.  

You then need to connect the wires together as shown in Figure 5 and Table 1 - Keyboard Signals. Pins 2, 

4, 5 & 20 of the keyboard connector (not the IDE numbering) have no connection and pin 2 is used as a 

key. I blocked off pin 2 by blocking the hole with a pin from another header plug. As the other side of the 

IDE cable has pin 20 blocked off, this makes it impossible to connect the plug incorrectly. The contacts on 

a typical keyboard have around 110 ohms of resistance, so I have put small resistors in line to limit the 

current. There is also a small signal diode with the cathode connected to the keyport 6529 (Signal Out) side 

of the connector to stop the joystick loop-back interfering with the testing of the keyport. 

http://ist.uwaterloo.ca/~schepers/diagnostic.html


 

Figure 5 - C16 Keyboard connector 

All the other 264 machines use an 18-way FFC (Flat Flexible Cable.) Although the mechanical construction 

of the keyboard for the Plus/4 and C116 is quite different, it is electrically compatible, so you can use a 

Plus/4 keyboard on a C116 and vice-versa. Even the more esoteric 264 machines such as the 232, 264 

and V364 all use the same compatible keyboard connection. 

This connector is not easy to construct unless you have a supply of 18-way FFC cables. Others have had 

success using 0.1 inch pin headers, but my concern with this approach is that the pins are much thicker 

than the cable and it may stress the socket to the point where the original cable does not make a good 

electrical connection. I would recommend that for casual use, the user just stick with manual testing of the 

keyboard. The pins are in the same order but numbered differently on the C116 and Plus/4, as seen in 

columns 6 and 7 of Table 1 - Keyboard Signals. 

Signal Out Signal In Key C16 Pin Out C16 Pin In Plus/4, C116 

Pin Out 

Plus/4, C116 

Pin In 

D0 K4 F1 19 7 18 6 

D1 K5 S 8 9 7 8 

D2 K6 T 12 10 11 9 

D3 K7 V 11 3 10 2 

D4 K0 9 13 18 12 17 

D5 K1 P 1 15 1 14 

D6 K2 ; 16 14 15 13 

D7 K3 2 6 17 5 16 

Table 1 - Keyboard Signals 

JOYSTICK LOOP-BACK 

The design of the joystick interface on the 264 is quite different to other 8-bit Commodore computers. With 

the exception of the fire buttons, all the control lines from ports 1 and 2 are all wired together and connected 

to the TED’s keyboard latch. Whereas the 64’s joystick interface worked by pulling the control line to ground, 

this interface works by using a buffered data line as the joysticks input. So as to not make life too easy, 

Joystick 1 uses D2, and Joystick 2 uses D1 ! 



I toyed with several ways of building a test circuit that I felt was safe for the TED, and the one shown in 

Figure 7 was the simplest that I was comfortable using. A 74HCT244 is perfect for our needs, it is a TTL 

octal buffer with two active low enable lines, each enabling 4 outputs. By driving the enable lines with the 

joystick select lines and holding the inputs low, it effectively emulates the joystick being pushed in every 

direction at once. Again, as the contacts in the +4 Joystick have a resistance of around 110 ohms, I have 

included similar valued resistors in series with the outputs. The +5V and GND are available on both ports 

and can be taken from either or both. Although you can solder the wires to 8-pin mini-dins, it is very fiddly 

and I would suggest finding and cutting a cable with a moulded plug. If you can find them, pld AppleTalk 

network cables are great for this. 

 

Figure 6 - Joystick Port Connections 

 

Figure 7 - Joystick Test Circuit 

 

OPERATION & TEST WALKTHROUGH 

Install the ROM or insert the cartridge, connect the loop-back connectors, connect a monitor or correctly 

tuned TV and finally the PSU, then power on the machine. Most of the screen shots that follow are either 

grabbed from YAPE or VICE2.3 simply because the quality is better, but some of the ones that rely on the 

loop-backs are taken with a camera pointing at my LCD TV. 

LOW RAM TEST 

The first sequence of tests is run as soon as the CPU hands over execution to the diagnostic ROM. The 

principle is to execute a memory test of the address space of $0002-$0FFF without making any use of the 

Zero Page or Stack. This is a bit tricky to do as you only have the normal A, X & Y registers available on 

the CPU and you also need to have some means of communicating a meaningful status back to the user 

in the case of finding a fault. The test routine achieves this by using the stack pointer (SP) as a fourth 

register and the screen and border colour to communicate the status. 



First is a data-bus test which writes a sequence of values to a fixed location, in this case $00FF. The values 

test each data line in turn, using values 1,2,4,8 etc. Any failure to read back the same value will either 

indicate a problem with the data line or with one of the DRAMs. I say either because although these tests 

can give a strong indication of where the problem may lie, it is frequently impossible to be definitive. 

If a problem is detected, the border will flash from 1 to 8 times, followed by a short pause. The number of 

flashes indicates which data line is at fault. Additionally, the screen background colour is set to dark red, so 

you can tell where in the test sequence the problem was found. 

I have found the screen contents to be an invaluable source of information when diagnosing ram faults; it 

is possible to identify stuck data lines or addressing faults just by looking at the screen contents. For this 

reason, if the ram tests detect an error and drop into the screen flash, the screen will alternately fill with ‘@’ 

symbols and ‘¿’, which are values $00 and $FF respectively. It will also alternate from filling top downwards 

and bottom upwards, to help identify addressing faults. The patterns you should see are shown below in 

Screenshot 1 - Low RAM Flash Screens. If you see the screen filling with values other than this, or the fill 

is not uniform, you may be able to determine the problem by cross referencing the observed characters 

with their corresponding value. As there would be no point proceeding with any further tests if the zero page 

or stack is at fault, the machine will continually repeat the flash cycle until powered off or reset. 

  

Screenshot 1 - Low RAM Flash Screens 

The second low-ram test is designed to identify addressing faults. The RAM tests implemented in the 

original Commodore diagnostic ROMs were actually rather poor in that they usually wrote the same byte 

across the entire address space. This makes them unable to highlight addressing related issues, such as 

failed multiplexers. 

The address bus testing in Diag264 tries to be a bit smarter. In early versions the test worked by writing a 

pattern of bytes across the low ram area in an upwards direction, verifying the contents, then writing a 

different pattern of bytes in a downwards direction. This approach had its drawbacks and was replaced by 

a more elegant test which writes a bit pattern to a given memory address, and then writes the inversion of 

this bit pattern to all the complementary addresses where the address differs by the inversion of only one 

of the address bus lines. 



In Diag264 we use a base address at $00FF, so we first write $00 to the following addresses, which are all 

the complementary addresses of $00FF below $0FFF where the state of one of the lines is has been 

inverted, plus $00FF itself. 

Address Address Bus Flashes on failure 

$007F 0000 0111 1111 8 

$00BF 0000 1011 1111 7 

$00DF 0000 1101 1111 6 

$00EF 0000 1110 1111 5 

$00F7 0000 1111 0111 4 

$00FB 0000 1111 1011 3 

$00FD 0000 1111 1101 2 

$00FE 0000 1111 1110 1 

$00FF 0000 1111 1111 base address 

$01FF 0001 1111 1111 9 

$02FF 0010 1111 1111 10 

$04FF 0100 1111 1111 11 

$08FF 1000 1111 1111 12 

Table 2 - Address Bus Flash Codes 

Then we write a value of $FF to $00FF, and check that all of the other addresses still contain $00. If there 

is any problem decoding addresses, or there is a stuck address lines in either in the multiplexers or the 

RAM’s themselves, then one or more of the addresses above would also appear to have changed. This is 

a simple but powerful tool to detect addressing problems. 

If faults are found, the reporting mechanism is the same as with the data-bus test, except this time the 

background will be blue. The number of flashes corresponds to the address line where the problem was 

identified. As before, further clues may be determined by observing the screen contents during the screen 

flash cycles. 

The final low-ram test is a device test, which writes a sequence of 20 test bytes across the address space 

using the same algorithm as found in the C64 dead test cartridge. The bytes are: 

$7F, $BF, $DF, $EF, $F7, $FB, $FD, $FE, $80, $40, $20, $10, $08, $04, $02, $01, $FF, $AA, $55, $00 

In my opinion, this test is of limited value as a device test given the DRAM architecture. In a system using 

8 64k x 1 bit DRAMs, writing the same value across the whole address space will result in each DRAM 

being all ‘1’ or all ‘0’, which is not much use for identifying pattern sensitivities. As discussed below, the 

High-RAM tests incorporate a much better pseudo random number generator which should pick these up. 

The screen border will cycle through a sequence of colours as each test byte is used and, as the low-ram 

area includes the screen and colour memory, you will see the contents of the screen rapidly change. The 

same reporting mechanism is used if an error is found during this test, with the screen background being 

black. If a failure occurs at this point, the number of screen flashes will point very strongly to the defective 

DRAM. The table below shows which IC is the likely problem. 



Flashes Bit Plus/4  IC C16 IC C116 IC 

1 D0 U11 U5 U5 

2 D1 U12 U5 U5 

3 D2 U13 U5 U5 

4 D3 U14 U5 U5 

5 D4 U15 U6 U6 

6 D5 U16 U6 U6 

7 D6 U17 U6 U6 

8 D7 U18 U6 U6 

Once in the flash sequence, problems with particular devices will usually be visually obvious as the screen 

contents cycle between $00 and $FF. For example, if on a Plus/4 U15 has failed leaving bit 4 stuck high, 

instead of seeing alternating ‘@’ and ‘¿’ symbols, you would see ‘P’ (hex value $10) and ‘¿’. 

Once the low RAM tests have completed, Diag264 knows that the zero-page and stack are now functioning 

correctly, so the stack is initialised and the TED registers set up as they would be on normal machine start-

up. As we also know the screen RAM is functional, we can revert to a more human friendly form of 

communication before moving on to the more comprehensive tests. 

SCREEN LAYOUT 

Now is a good time to explain the general layout of the screen, most of which is self-explanatory. Look at 

the screenshot of a completed test cycle in Screenshot 2. On the top line is the title, with the version number, 

and in the top right is the current display mode, being PAL or NTSC. On the bottom line, from left to right, 

is the current cycle number in hexadecimal, followed by the current random number seed used in the RAM 

tests, (which has little practical value other than to me), followed by my name, the year, and the build 

number, in the bottom right. The build number is the timestamp of when the binary was compiled, in the 

format YYYYMMDDHHMM, 

Down the left side is the name of current test in progress, followed by the status of the completed tests, 

which would be OK, FAIL, or SKIP. The next numeric column is the total number of failures for this test 

since the tests started. If the diagnostic is left on continuous loop, this is useful for spotting intermittent 

failures. To the right is information specific to the test, which is covered in the detailed explanations below. 

As each test runs, the cursor will flash to the immediate right of the test name. The area below the list of 

tests may contain various other additional information, depending on the current test. 



 

Screenshot 2 - Screen Layout 

HIGH RAM TEST 

The high RAM test performs a similar sequence of tests to the low RAM tests, but on the memory area from 

$1000 to the upper end of installed RAM, which could be $3FFF, $7FFF or $FFFF, depending on the model 

under test. The test first identifies the amount of installed RAM by writing a sequence of bytes to $30 and 

checking to see if they are mirrored at $4030 or $8030. The amount of installed memory is displayed when 

the test completes. 

On a 64K system we also need to test the RAM that resides beneath the ROM’s. To do this, the high RAM 

code is copied to $0200 and the RAM made visible to the CPU by writing to the TED pseudo register at 

$FF3F. As it’s not possible to access the RAM beneath the I/O areas, memory is then tested up to $FCFF 

and then from $FF20 to $FFFF, skipping locations $FF3E and $FF3F. 

In order to speed the tests up, the screen is blanked, allowing us to make use of the clock doubling feature 

of the TED architecture. On a 64K system they will take approximately 20 seconds to complete and the 

screen colour will cycle as the test values change. 

Two types of error can be reported, either an addressing or a device error. In both instances, as shown in 

Screenshot 3 and 4, the address where the error occurred will be displayed, as well as an exclusive or 

between the written and expected value. The addressing error occurs when performing the same type of 

address testing as described in the low RAM tests, only this time testing the complete address range. 

A device error occurs when the address tests have completed successfully but then a value read does not 

match what was written. As well as the byte pattern tests as described in the low RAM tests, the device test 

also writes a sequence of pseudo random numbers across the address space to try and catch subtle pattern 

memory issues that otherwise would not show up. If Diag264 is left running, each iteration of the high RAM 



test will start with a new seed value, ensuring the maximum possible exercising of the RAM. 

 

Screenshot 3 - RAM Address Failure 

 

Screenshot 4 – RAM Device Failure 

ROM TESTS 

The ROM tests perform checksums on any installed ROMS, including those in the Function High and Low 

sockets. Each ROM is check summed three times using a cyclic redundancy checksum. If an inconsistent 

value is read, it is assumed no rom is present and the message ‘SKIP’ is displayed. If SKIP is seen when 

a ROM is known to be present, this should be considered a failure. If the checksum of the ROM is 

recognised, the part number and revision is displayed. Any other computed checksum will result in a ‘FAIL’. 

An example can be seen in   . 

The checksum routine is copied to $0200 in RAM to allow the different ROM’s to be switched in. The Low 

ROM area is summed from $8000 - $BFFF and High ROM from $C000 - $FFFF, with the exception of 

$FD00 – $FF1F for the I/O area. For high ROMs other than the kernal, the area from $FC00 - $FCFF is 

also skipped as the 264 architecture always exposes the default kernal in this area to allow the bank 

switching and interrupt routines to always be visible. 

One observation I made while developing this is that that when reading the two bytes at $FF3E and $FF3F, 

the contents of the ROM are visible. These are not check summed because this behaviour is not 

consistently modelled in emulators and the only official kernal to have values other than $00 in these 

locations is the NTSC R5 kernal ($FF and $FF.) 

All known official ROM’s are recognised, along with known beta versions, and those with modified 

Hungarian characters sets. If it’s identified, it will display the text in the table below, which in the case of 

officially released ROM’s, will be the Commodore part number.  



Table 3 - Diag264 recognised ROM's 

Description Checksum Diag 264 Display 

Basic ROM Beta 0119 (19th January 1984) $F885 BETA 0119 

Basic ROM Beta 0203 (3rd February 1984) $23D5 BETA 0203 

Basic ROM Beta 0217 (17th February 1984) $5031 BETA 0217 

Basic ROM Release version $EC81 318006-01 

Kernal ROM Beta 0119 (19th January 1984) $1D45 BETA 0119 

Kernal ROM Beta 0203 (3rd February 1984) $0355 BETA 0203 

Kernal ROM Beta 0217 (17th February 1984) $D17A BETA 0217 

Kernal ROM Beta 0316 (16th March 1984) $424E BETA 0316 

PAL kernal Revision 1 (EPROM only) $33F0 318004-01 

PAL kernal Revision 3 $1FC9 318004-03 

PAL kernal Revision 4 $010D 318004-04 

PAL kernal Revision 5 $EEA6 318004-05 

NTSC kernal Revision 4 $5FAD 318005-04 
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Diag264 Varies DIAG264 

KEYBOARD TEST 

The keyboard test checks two aspects of the keyboard operation, the 6529 single port interface and the 

keyboard latch on the TED chip. It does not perform an exhaustive check on the keyboard matrix, as this 

can be done in the advanced keyboard tests discussed later. The test can be carried out manually or by 

using the keyboard loop-back plugs for unattended testing. 

The test first checks to see if the shift-lock is held down. If so, the remainder of this test, as well as the 

joystick test, is skipped, avoiding unnecessary delays waiting for keys that will never be pressed if the loop-

back plugs are not in place. If not, the 6529 keyport is tested to see if it can hold a value by writing to the 

port and comparing with the values that are read back. If any problems are detected with the keyport, the 

message “6529 KEYPORT BAD” is shown when the keyboard test completes. 



The keyboard port is then cleared (all bits set high) and the TED keyboard latch sampled. If the latch 

contains anything other than $FF, this indicates a possible keyboard problem. At this point a string of 8 

keys to be pressed is displayed on the screen in black, as seen in Screenshot 5. 

 

Screenshot 5 – ROM Fail and Keyboard Test 

The test will then pull each of the lines low on the keyport in turn, keeping each one low for approximately 

2 seconds. The leftmost black key is the one that should be pressed if a keyboard is attached and also 

corresponds to the loop-backs on the keyboard connector if that is being used. The keys and loop-backs 

have been chosen so that each line on the keyport pulls a different bit of the TED latch low. If the 

corresponding bit of the latch does not go low within two seconds, that port/latch combination is deemed to 

have failed, the key is colour red, and the test moves on to the next key. 

On success, the key will be coloured green and an additional test will be done by clearing the port and re-

reading the latch register after a short delay. If the same value cannot be read from the latch it indicates a 

problem with the latch being able to hold the value correctly, a common partial failure of the TED. In this 

instance the message “TED LATCH BAD” will be displayed, but only after the joystick test has completed!  

You can see in Screenshot 5 that the first five keys were successfully detected, 6 and 7 were not, and the 

final key (2) is currently being waited for. If a loop-back is being used the test will complete very quickly if 

successful. 

JOYSTICK TEST 

The joystick test operates much in the same way as the keyboard test, except that instead of a list of keys, 

a list of possible directions for the two joystick ports is displayed. They will initially be displayed in black 

text, which turn green as each direction is detected. As it’s not always easy to be precise if using a joystick 

to manually provide the input and as we do not have to test an output port, the test does not require the 

joystick to be actuated in any particular order. The test will be flagged as complete once every direction and 



fire button has been detected. If directions are still outstanding after approximately 15 seconds, the test will 

be flagged as a fail. 

With a suitable loop-back connected, the test will complete very quickly. Without a loop-back, the only way 

to get this to successfully complete is to have a joystick connected to both of the ports. If you suspect one 

of the joystick port has issues but you only have a single joystick, you should start the test with the joystick 

on port one, determine that it works or not, then power off the machine and swap the joystick to the other 

port. Although there is some electronic protection on the joystick ports, you should never swap joysticks 

over with the power on. 

As with the keyboard test, the TED latch is also tested to determine that it can hold a value. If a latch 

problem is detected in either the joystick test or the preceding keyboard test, the message “TED LATCH 

BAD” will appear after the test completes. See Screenshot 6. 

If a joystick loop-back is not available, activating the shift lock before the test starts will cause the joystick 

test to be skipped. 

 

Screenshot 6 - Failed TED Latch 

CASSETTE TEST 

The cassette interface on the 264 series is implemented using P4, P1, and P3 of the 7501/8501 CPU for 

read, write, and motor control respectively. On a Plus/4 the cassette sense is implemented by port bit P2 

on the user port 6529. There is no 6529 on the C16, C116 or C232 but the equivalent cassette sense 

operation is mirrored using a tri-state buffer to drive D2 to the state of the sense line when reading from 

$FD10. 



The Plus/4 motherboard has two jumpers, J8 & J9, which theoretically also allow the cassette sense to be 

implemented by P7 on the CPU, but on every Plus/4 board I have seen, it has only ever been implemented 

by P2 of the 6529. Also, there is nothing in the kernal that would suggest that this was ever supported in 

software, so Diag264 will not check for sense operation on the CPU. 

If the cassette test fails at any point, a status byte will be shown to the right of the cycle count which will 

indicate during which step of the test it failed. The steps in the test are as follows: 

01. Start with write low (P1) and check read (P4) is high. 

02. Hold write high and check read is low. 

03. Hold write low and check read is high again. 

04. With the motor off, check if P7 in unaffected 

05. Check P2 of 6529 at $FD10 is low 

06. Turn cassette motor on (P3 low), and check P3 remains low 

07. Check P2 of 6529 at $FD10 is now high. 

All of the CPU output ports are inverted by a 7406 at U6 on a Plus/4 and U9 on a C16/C116. Assuming the 

loop-back is installed correctly, any failure in steps 1-6 strongly indicates that either the CPU or the 7406 is 

faulty. If a failure occurs at step 7, it implies the cassette sense circuit is at fault or, more likely, that the 

cassette motor circuitry is at fault. 

Further diagnosis of the CPU’s I/O ports can be done using the Advanced Port Testing feature described 

later. 

SERIAL TEST 

The IEC serial port is internally looped back, with the exception of the ATN line, which is looped back to 

CLK in in the connector. As with the cassette test, a status byte will be shown to the right of the cycle count 

which will indicate exactly which step of the test failed. The steps in the test are as follows: 

01. Start with DATA out (P0), CLK out (P1) and ATN (P2) low and check DATA in (P7) and CLK in (P6) 

are high.  

02. Hold DATA out high and check DATA in is low. 

03. Hold DATA out low and check DATA in is high again. 

04. Hold CLK out high and check CLK in is low. 

05. Hold CLK out low and check CLK in is high again. 

06. Hold ATN out high and check CLK in is low. 

07. Hold ATN out low and check CLK in is high again. 

The serial port shares much of the circuitry with the cassette, so any problems with this test strongly indicate 

an issue with the CPU ports or the 7406 inverter. 

USER PORT TEST 

The user port on the Plus/4 contains two interfaces, the 6529 single port interface and the 6551 ACIA 

RS232 interface, which are only normally present on the Plus/4. This test exercises both to determine 

correct operation, starting with the 6529 port. 



After setting all port bits high (inactive), the port is read over a period of time to ensure the value is stable. 

This is a best endeavour to ensure the port is present on the machine being tested, as the data lines usually 

float with random values if not. The test will say ‘SKIP’ if it can’t be found. If you know the port to be present, 

this should be read as a fail. 

The individual data lines of the port are activated in sequence to ensure they pull the corresponding looped 

back data line low (see Figure 4) if not, the test will fail. In this instance, the status byte will contain the 

hexadecimal representation of the failed port bits. 

RS232 PORT TEST 

The ACIA is rather more complex to test as the communication is interrupt driven. First an interrupt handler 

is set up in the low memory error to catch the communication related interrupts and then the port is 

configured for 8-bit words, 1 stop bit, 2400 baud. If this value cannot be read back from the control register, 

the ACIA port is assumed not to be present and skipped. If any of the following steps fail, the step will be 

indicated in the status byte. 

01. RTS and DTR are cleared. DSR is checked to see if it is set. 

02. DCD is checked to see if it is set. 

03. Interrupts are enabled and DTR is set ready. After a short delay, check that an interrupt has 

occurred and that DCD has been cleared.  

04. RTS is set ready. After a short delay, check that an interrupt has occurred and that DSR has been 

cleared. 

Now a sequence of 192 test bytes is set up and transmitted using the ACIA. All the communication is 

interrupt based, interrupts being generated when the receive register (all 1 byte of it) is full and when the 

send register is empty. The location for the received message is set up to be about ¾ of the way down the 

screen, so if the message is received correctly, you should see something like Screenshot 7. 

 

Screenshot 7 - RS232 Test 



The test waits approximately 2.5 seconds for the message to be received before checking the following 

conditions have been met. 

05. Check that ‘bytes to send’ is now zero. 

06. Check that ‘bytes received’ is now 192. 

07. Check no overflow errors occurred. 

08. Check no framing errors occurred. 

09. Check no parity errors occurred. 

10. Check the contents of the receive buffer match the send buffer 

INTERRUPT & 2X CLOCK TESTS 

The interrupt tests checks that the interrupt sources on the TED chip are all functioning correctly. The TED 

has 4 usable interrupt sources; 3 timers and the raster interrupt. These are initialised to a specific pre-

condition and then allowed to run for approximately half a second (525353 cycles) before a count is made 

of the number of interrupts that occurred. If this number falls outside of the boundaries shown below, the 

TED may be at fault. 

A number of factors can affect this number such as running the Diag264 from a cartridge or kernal ROM 

(the latter bypasses the normal interrupt vectors,) the PAL or NTSC television standard (different number 

of lines to render,) the kernal version, and the presence of an ACIA on the system (causes more interrupts), 

and even factors caused by the compilation of Diag264 which result in branches falling across page 

boundaries. Theoretically I should be able to precisely know how many interrupts should have occurred, as 

the system should be deterministic in nature, but I’ve never been able to completely achieve this. 

The test is performed twice, the first time with the TED forced into single clock mode and the second time 

with the screen blanked, thus running at twice the speed. The interrupt sources and the boundaries currently 

defined for both single and double clock operation are seen in Table 4. 

Table 4 - Interrupt Sources and Boundaries 

 Single Clock Double Clock 

Interrupt Source Lower Bound Upper 

Bound 

Lower 

Bound 

Upper Bound 

Timer 1 with a reload value of $2000 $53 $57 $26 $27 

Timer 2, initialised with $0100 $0B $0C $05 $06 

Timer 3, initialised with $FF00 $0A $0B $04 $04 

Raster Interrupts at scan line 204 $26 $30 $12 $16 



Each count will be displayed as it completes; in green if within the boundaries defined above, otherwise 

red. An example of the output for a successfully completed test is shown in Screenshot 2, earlier in the 

document. 

TED REGISTER TESTS 

The final sequence of tests attempts to test as many of the TED registers as can reasonably be achieved 

in a short space of time. Some of the registers have already been tested prior to this section, for example 

the screen blanking, clock doubling and timers. For most of the remaining registers it is not possible for the 

software to determine an ‘OK’ or ‘FAIL’ state so it relies on the observer to make that decision after 

comparing the results to this document. 

A sequence of three screens is displayed, and the observer should be on the lookout for deviations from 

what is described and shown below. A musical scale is played for the duration of each screen using one of 

the three voices for each of the screens. 

COLOUR PALETTE 

This screen plays a scale on voice 1 and displays a cycling colour palette. It doesn’t really do much more 

than show off the TED’s colour palette. 

 

Screenshot 8 - Colour Palette 

TED GRAPHIC MODES 

The second screen has much more going on and is designed to show the available graphics modes on a 

single screen. You should check carefully that what is shown on the screen matches Screenshot 9 - TED 

Graphics Modes. The modes displayed are shown alongside the screenshot. 



The top three sections show the three different text modes. Each section shows four rows of characters 

with tile values of 0 – 39, 64 – 103, 128 – 167 and 192 – 231 respectively. The attribute (colour) values are 

set to the same value. 

The first, with the dark blue border is the default Hi-Res text mode. Although not seen in the static picture, 

the third and fourth rows will be flashing. The second, with the black background, shows multicolour mode, 

which is not really suited to the inbuilt character set but should nevertheless be noticeable on characters 8 

– 15 and 24 – 31. The third text mode, with the yellow background, shows the rarely used extended 

background mode, where the first 64 characters are rendered on a different coloured background 

depending on the value of bits 6 and 7 of the tile value. 

The bottom two sections highlight the bitmap graphics modes, Hi-Res and multicolour, with respective 

green and red borders. The top should show a grid of white lines and the bottom a grid of alternating vertical 

blue and red lines with green horizontal lines. 

 

Screenshot 9 - TED Graphics Modes 

SMOOTH SCROLL 

The final TED register test demonstrates the smooth scrolling and the 24 row, 38 column modes. The status 

screen is moved in a sinusoidal wave. There should be no visible artefacts on any of the borders or any 

shearing of the display. The white noise generator should be heard during this test. 



 

Screenshot 10 – Smooth Scroll 

EXTENDED KEYBOARD TEST 

When the main tests complete, there will be a pause of a few seconds before the cycle starts again. During 

this time you have the option to select from two advanced tests, namely pressing ‘K’ for the advanced 

keyboard tests, and ‘P’ for the advanced ports testing. If the keyboard loop-back plug is detected, this option 

will not appear, as clearly the keyboard is unavailable. 

The advanced keyboard tests were implemented to identify keyboard reliability issues and to identify 

patterns which may cause complete rows or columns of keys to fail, which may in turn indicate that there is 

a problem with the keyboard output port or TED latch. Fundamental problems should be detected by the 

man keyboard test, but this allows for an additional level of investigation. 

Displayed you will see a screen as shown in Screenshot 11 – Advanced Keyboard Testing, which shows 

the keyboard not as it is physically laid out, but according to the rows and columns of the 6529 keyboard 

port and TED latch. Initially, all keys will be black, showing that the key has not yet been pressed. While 

each key is pressed, it will highlight in a reversed green colour, which will revert to non-inverted, but still 

green, once the key is released. 

Using this, you can go through all keys ensuring that they are responding correctly, including when used in 

conjunction with either shift, shift-lock, or the Commodore key.  



 

Screenshot 11 – Advanced Keyboard Testing 

To exit the keyboard test, either press ‘Control’ and ‘Q’, or wait for the hexadecimal countdown timer to 

reach 00, after which the main test cycle will restart.  

EXTENDED PORT TESTS 

The extended port testing functionality was added to enable more detailed investigation of the I/O ports on 

the CPU and, if fitted, the 6529 on the user port. Having issues with the ports can cause problems with the 

cassette deck and the IEC port for disk drives and printers. As well as the CPU itself, some of the failure 

points include the 7406 hex inverter and the diodes that protect the I/O lines. During normal operation, it 

can be quite difficult to investigate these without an oscilloscope as the states change very quickly, but this 

tool allows you to maintain the ports in a steady state and toggle them as required. 

After the pressing ‘P’, you will see an image similar to the one shown in Screenshot 12 – Extended Ports 

Testing . At the top of the screen is the CPU with the CPU DDR (Data Direction Register) at memory location 

$00, followed by the write value to the CPU port register itself at location $01, and finally the value read 

back from the port register. All the values are shown as a hexadecimal value, followed by a binary 

representation of the register. For the DDR these are represented by ‘I’ and ‘O’ for Input and Output 

respectively. For the written value, port bits set to input by the respective value in the DDR are displayed 

as a dash ‘-‘, and ports set to output displayed as a solid block for a high value, and a dot ‘.’ for a low value. 

For the read value, the same scheme applies, again being shown as a solid block for a high value and a 

dot for a low value. To the right is a summary of the use of the CPU port on 264 computers. 

Below the CPU is the 6529 SPI (Single Port Interface) at location $FD10 which is exposed on the user port 

of the Plus/4. The 6529 does not have a corresponding DDR, so just the write and read values are shown. 

To the right is shown the only standard use of this port, where P2 is used for cassette sense. On a C16, 

the 6529 is not present, but the ability to read P2 is still implemented using some basic TTL logic.   



 

 

Screenshot 12 – Extended Ports Testing 

Operation is quite simple, in that the ‘CTRL’ key is used to rotate between the CPU DDR, the CPU port 

write value and the 6529 write value. The selected port is highlighted in reversed green text. Once selected 

the individual register bits are manipulated using the keys ‘0’ to ‘7’. On the DDR, these will toggle the port 

bits between input and output, while on the write values this will toggle between high and low outputs. 

On the CPU port, any bits set as input via the DDR cannot be changed. The default value for the DDR on 

264 machine is $0F, meaning port bits 0 to 3 are outputs and 4 to 7 are inputs. There should not normally 

be any reason to change the DDR from its default value, as once set by the kernel, it is never changes 

during the normal operation of the machine and neither does any other software change it to my knowledge. 

If you have a cassette deck attached, then pressing play, fast forward, or rewind, should cause the cassette 

sense bit to toggle. Toggling P3 on the CPU output will cause the motor to start and stop. With the motor 

enabled, playing a tape with a program on should cause P4 to flicker rapidly. 

As some of the CPU ports are internally connected, then without the loop-back plugs installed toggling P0 

should affect the input on P7, and likewise P1 will affect P6. 

If you have the loop-back plugs installed, then P3 (motor) should toggle the sense line, and P1 (cassette 

write) should toggle P4 (cassette read.) 

THE END 

At the end of the test, the display will pause for a few seconds before looping round and continuing from 

the High RAM test again. 



DIAG264 VERSION HISTORY 

0.15A - added colour to print_msg 

 - made sure that keyport and latch messages are always displayed 

 - fixed long standing bug with timer 3 checks 

0.20A - re-write of rom check routine 

0.21A - updated ZP usage 

0.22A - tidied low-ram test, integrated ted mode screen 

0.4A - integrated smooth scroll 

 - added databus and address bus tests 

 - added 128 char definitions 

0.5A - added better address bus tests and for high ram 

0.6A - added HW cursor 

0.7A - tolerance checks on interrupt counts 

0.1B - High RAM location reporting 

 - fixed a raster synch issue with the interrupt counts which should improve count stability 

 - implemented NTSC compatible tests... 

0.11B - allowed skipping of KB test even if failures have occured 

0.12B - improved latch testing on KB test 

0.13B - fixed keyport bug 

 - fixed setting of cassette motor if sense is on cpu-p7 so it doesn't break serial test 

 - fixed location of $FD10-D2 message 

0.2B - first Beta release! 

 - relaxed interrupt tolerances based on running on NTSC machine 

0.3b - much improved address bus test 

0.5b - fixed databus test to correctly mask bits 

0.6b - Autodetect PAL/NTSC if running from cartridge (F33F - #$08 for PAL, #$48 for NTSC) 

 - Always allow KB skip 

0.7b - Fixed NTSC/PAL toggle. 'P' forces PAL and 'N' forces NTSC 

 - Avoid conflict if dongle installed 

0.8 - Updated version & 2016 

 - remove cpu-p7 cassette checks, messages etc 

 - fixed raster detection in colour_sound_test 

 - simplified colour sound test 

0.9 - Updated version & 2018 

 - ROM checksums now CRC-16 

 - use a single smooth scroll dataset and manipulate bits 

 - various minor code optimisations 

 - Doesn't trash the screen when check-summing function ROM's 

 - stabilised raster splits 

 - added various beta kernals 

0.91 - added extended KB test 

 - fixed small bug in forcing NTSC mode 

 - cart version now works in any low-rom position, including replacing func-low 

 - cart_lo renamed to low_rom 

 - fixed bug caused by small_delay sitting across a page boundary causing interrupt… 

- …timing discrepancies 

 - align interrupt handler to page boundary, again to avoid timing discrepancies 

 - added pseudo random number testing to RAM 

0.92 - added advanced port testing 

 - added checksum for Andy Challis' 6510 replacement kernal 

 - reset interrupt sources at end of TED interrupt tests 

0.93 - beta release 

 - changed keys to toggle ports to 0->7 instead of 1->8 

 - Added some information to the EPT tests to describe the use of the ports 

 - reset the ports at the beginning of EPT 

 - show Diag264 and not FAIL if running from low-ROM socket 

0.94 - fixed bug that always sent the tests into the port testing if the KB loop-back plug… 

- …was installed 

- added check to detect KB dongle and if present don't show messages for advanced tests 


