

DIAG264

DOWNLOAD HERE!

This document describes the purpose and operation of the 264 series diagnostic tool and harness. It can

be used to assist in the identification of faults with RAM, ROM, I/O & CPU ports, and TED registers. It has

been tested on a wide range of 264 series (aka TED) machines, including some non-standard

configurations and PAL and NTSC machines. This includes the C116, Commodore 16, C232 and Plus/4,

and even a V364!

It was developed primarily on a Windows 7 PC using TextPad, 64Tass, YAPE and VICE .

Thank you, in no particular order, to the following individuals.

 Bil Herd, the lead engineer of the TED project, and who also wrote the TED System Hardware

Manual.

 Terry Ryan, Fred Bowen, John Cooper, Dave Haynie, Bruce Ahearns, Dave DiOrio, Eric Yang, Bob

Olah, Ted Lengthy and countless other Commodore engineers who designed the chips and

engineered the TED system and to whoever in this list who wrote the 7360 Data Sheet !

 Hársfalvi Levente (TLC) for various musings on cold starting from cartridges, joystick ports, TED

latches and other hardware stuff

 Martin Korth for the pagezero commodore specifications

 Valentino Zenari (SVS) for the most excellent SVS ROM Map

 Attila Grósz (Gaia) for the extremely cool YAPE emulator.

 Groepaz and the Vice team for the equally cool VICE emulator and fixing the bugs within days!

 The Western Design Center for information on the 6551.

 Csaba Pankaczy (csabo) for info on which TED registers to check. One day I will ask you to make

better ones. 

 Everyone else on Plus4World and Commodore16.com.

The HTML version of the document can be found here and you can contact me either by a private message

to ‘crock’ on Plus4World or Lemon64. You can also send email to a filtered email account at

DISCLAIMER

http://www.inchocks.co.uk/commodore/Diag264/CurrentVersion/
https://www.textpad.com/
https://sourceforge.net/projects/tass64/
http://yape.homeserver.hu/
http://vice-emu.sourceforge.net/
http://www.c128.com/
http://inchocks.co.uk/c64/264/TED%20System%20Hardware%20Manual.pdf
http://inchocks.co.uk/c64/264/TED%20System%20Hardware%20Manual.pdf
http://inchocks.co.uk/c64/264/TED%207360R0%20Preliminary%20Data%20Sheet.pdf
https://problemkaputt.de/pagezero.htm
http://plus4world.powweb.com/dl/tools/rommap/download.php
http://yape.homeserver.hu/
http://noname.c64.org/csdb/scener/?id=572
http://vice-emu.sourceforge.net/
http://www.westerndesigncenter.com/wdc/documentation/w65c51n.pdf
http://plus4world.powweb.com/forum
http://www.commodore16.com/
http://www.inchocks.co.uk/commodore/Diag264
http://plus4world.powweb.com/forum
http://www.lemon64.com/forum/

As soon as one undoes the screws and lifts up the lid on an old 8-bit machine, there is an element of risk

involved. To use this diagnostic tool in its most effective form, it requires replacing the kernel ROM in the

machine and attaching loop-back connectors to the interface ports of your machine. The TED chip

especially is sensitive to abuse and the built in latch register is easily broken by stray voltages and static.

Although I describe how to build such connectors that I have successfully used myself, they are not required

to test the keyboard and joysticks if you don’t need to run the tests unattended. Diag264 does provide

features to manually test the keyboard and joysticks and to bypass them to allow the rest of the tests to run

unattended. As keyboard and joystick problems are not usually intermittent in nature, this should not be an

issue for most users.

If you do choose to build loop-back connectors for the keyboard or joysticks, I will provide any guidance

that I can, but please understand that you do so at your own risk.

BACKGROUND

I acquired or built most of Commodore's official diagnostic cartridges and harnesses for the 64, VIC-20 and

C128, which they sold to service centres, mainly to help me fix the growing pile of computers I’d acquired.

Fixing them became somewhat an obsessive-compulsive habit, and I could not bear having broken

machines lying around. In amongst them I had a C16 and two Plus/4’s, only one of which worked. I started

searching around for a diagnostic cartridge for the 264 series but with no luck. I knew Commodore had

definitely made one, but I could not track it down. Finally, I found an image of one on Plus4World, but as I

never got any response from the owner, I decided that my only choice was to build my own.

DESIGN AND THEORY OF OPERATION

The design and operation of Diag264 is modelled closely on the operation of the cartridges available for

the 64/128 and VIC-20. One of the aspects that I was most keen to copy was the functionality of the Dead

Test Cartridge of the 64. The primary use of this cartridge was to find RAM issues in a machine that

otherwise appeared dead.

The majority of Commodores later 8-bit offerings used DRAM chips in either a 64k x 1 or 16k x 4

configuration. This usually meant that any dead RAM chip would make the machine completely inoperable,

as the zero page ($0002-$00FF) and stack ($0100-$01FF) are rendered practically unusable. The kernal

start-up routines in both the 64 and 264's make extensive use of the ZP and implicitly rely on the stack upon

the first execution of an RTS instruction. This presents a problem for any normal cartridge based diagnostic

tool because we are dependent on the kernal to hand over control to the cartridge ROM.

The Dead Test cartridge avoids this problem by making use of the 64's Ultimax mode, which was a legacy

from the MAX Machine, a cartridge only based console system which was a subset of the later 64’s

architecture. The Ultimax compatibility mode enables an external cartridge ROM to replace the Kernal of

the host machine and therefore bypass the normal start-up routines, making it a superior tool for identifying

RAM problems on an otherwise ‘dead’ system.

http://plus4world.powweb.com/home

The 264 architecture does not include any way of auto-booting into an external ROM without trying to pull

some dirty tricks with the address lines, so it becomes a trade-off between the convenience of a cartridge

versus the extra benefits of booting straight into the diagnostic. Not being a fan of compromise, the Diag264

ROM can be compiled for either cartridge or kernal.

The kernal option is a simple drop in replacement of the kernal ROM, which is the 28-pin ROM chip with

the identifier beginning with 318004 (PAL) or 318005 (NTSC.) The cartridge option involves either

sacrificing a standard commercial Commodore C16/Plus cartridge (I used Strange Odyssey) or you can

purchase 264 compatible cartridge blank from a couple of sellers on EBay.

If you choose to use a cartridge, you will need to remove the ‘low’ ROM and install a 28-pin DIL socket in

its place. With the edge connector facing towards you, this is the socket on the left. The image in Figure 1,

which is my own cartridge, also has a socket in the ‘high’ ROM position, on the right. This is not required

for DIag264.

Figure 1 - Cartridge Mod

The TED chip itself supports both NTSC and PAL standards, controlled by bit 6 of register $FF07. The only

differences between NTSC and PAL machines are a different clock crystal and a slightly different kernal to

correctly set the state of the PAL/NTSC bit, and also some other small modifications to take into account

timing differences.

When running from a cartridge, Diag264 queries the installed kernal to determine whether it should set

NTSC or PAL mode by checking the value of $F33F, which contains the default value for TED register

$FF07. The kernal version has no way to determine from software whether the base machine is NTSC or

PAL, so the ROM image is available in versions which default to either NTSC or PAL. Nevertheless, for

both the cartridge and kernal options, it is possible to override the default by holding down ‘P’ or ‘N’, as the

machine is powered on, to force the software into PAL or NTSC respectively. If the keyboard

LOOP-BACK CONNECTORS

To determine the correct operation of the various I/O interfaces, a number of loop-back connectors are

required. For a C16/C116/C232 you need a minimum of a serial port and cassette connector. For a Plus/4

an additional user port loop-back is required to test the Asynchronous Communications Interface Adapter

(ACIA) interface and the 6529 8-bit port. The ACIA is a 6551/8551 chip which provides the RS232 support

via the user port.

As mentioned above, it is also possible to construct connectors for the joystick ports and keyboard, but this

is not an absolute requirement if the user is prepared to manually execute the keyboard and joystick tests.

CASSETTE CONNECTOR

The cassette connector is reasonably simple, requiring a 7 pin mini-din connector, two 330 ohm resistors

and a few short lengths of wire. The diagram below is viewed looking at the rear/solder side of the plug.

Figure 2 - Cassette Connector

1. GND

2. +5v

3. Motor

4. Read

5. Write

6. Sense

7. GND

The read line [4] is directly connected to the write line [5] while the two resistors form a voltage divider

between the motor [3] and GND[7], with the resulting output being sufficient to pull the sense [6] line high

when the cassette motor is activated.

7 pin mini-din plugs can be sourced from most electronics retailers such as Maplins, Farnell or Digikey,

although they can be rather fiddly to solder given the small pitch of the pins. It may be easier to find another

lead with a 7-pin moulded plug pre-attached if you happen to have one to hand. A broken 1531 cassette

unit is ideal.

SERIAL CONNECTOR

The serial connector is even simpler. As the data and clock lines are bi-directional, they are internally looped

back, the only exception being the ATN line. The connector consists of a single link between the ATN [3]

and Clock [4] line. The diagram below is viewed looking at the rear/solder side of the plug.

Figure 3 - Serial Connector

1. N/C (Plus/4 & C232), +5v (C16 & C116)

2. GND

3. ATN (Out)

4. Clock (In/Out)

5. Data (In/Out)

6. Reset

6 pin DIN plugs are in plentiful supply and much easier to solder as they usually have cups to hold the wire,

so you shouldn’t have to sacrifice an IEC cable to make this.

USER PORT CONNECTOR (PLUS/4 ONLY)

The User port connector serves two purposes, firstly to test the 8-bit 6529 port, and secondly the 6551/8551

ACIA RS232 interface. This is constructed using a 24-way edge connector with .156” spacing, the same as

found on most other Commodore 8 bit machines. Again, the diagram below is viewed from the rear of the

plug. This connector can again be sourced on-line from the usual electronics retailers, and also from the

master of 8-bit C= hardware projects, Jim Brain.

You need to make seven links, four linking ports 0-3 on the 6529 to ports 4-7, which requires joining [B] ->

[6], [K] -> [7], [4] -> [J] and [5] -> [F] respectively. Then three connections looping back the signals for the

ACIA. These are [C] -> [M], [D] -> [L] and [E] -> [H]. This basically implements a standard RS232 loop-

back, the only difference being that the plus/4 does not expose CTS on the user port. Further detail about

RS232 loop-backs can be found in the datasheet for the equivalent W65C51N from the Western Design

Center. (W65C51N Datasheet)

A word of warning, please make sure you clearly label your connector ‘top’ and ‘bottom’ or, even better,

insert the vertical keys between 1 & 2 and A & B then 10 & 11 and L & M, as shown by the blue dotted

lines in the diagram. If you insert it upside down, you will short the 9V AC to the 5V DC line and you will fry

something in your machine.

http://store.go4retro.com/12-24-156-edge-connector/
http://www.westerndesigncenter.com/wdc/documentation/w65c51n.pdf

Figure 4 - User Port Connector

1. GND

2. +5V

3. /BRESET - Buffered Reset

4. 6529 – P2 (also Cassette Sense)

5. 6529 – P3

6. 6529 – P4

7. 6529 – P5

8. RxC – Receive Clock

9. ATN – IEC Attention

10. 9V AC

11. 9V AC

12. GND

A. GND

B. 6529 – P0

C. RxD – Receive Data

D. RTS – Request to Send

E. DTR – Data Terminal Ready

F. 6529 – P7

H. DCD – Data Carrier Detect

J. 6529 – P6

K. 6529 – P1

L. DSR – Data Set Ready

M. TxD – Transmit Data

N. GND

KEYBOARD LOOP-BACK

If you do decide to build the keyboard loop-back, this is how I built mine. There are two basic types of

connector used on the 264 series. The easy one is for the C16, which reuses the same style keyboard

connector as the VIC-20/C64, albeit with a different layout, and uses a 20-pin SIL (single in-line) plug with

a 0.1” (2.54mm) pitch.

This plug is easy to build using a discarded 40-pin IDE cable from a PC hard drive which has the same 0.1”

pitch. Although the plug is the same, the 80-pin IDE cables have each alternate conductor grounded to

reduce crosstalk. As a result the signal wires are much finer and more difficult to work with, so you’re better

off avoiding them. Peter Schepers has some info on preparing a similar plug for a Commodore 64 diagnostic

harness here http://ist.uwaterloo.ca/~schepers/diagnostic.html but the basic process is to split out the odd

numbered wires and cut the rest back close to the plug. Number 1 is usually marked by a different colour.

You then need to connect the wires together as shown in Figure 5 and Table 1 - Keyboard Signals. Pins 2,

4, 5 & 20 of the keyboard connector (not the IDE numbering) have no connection and pin 2 is used as a

key. I blocked off pin 2 by blocking the hole with a pin from another header plug. As the other side of the

IDE cable has pin 20 blocked off, this makes it impossible to connect the plug incorrectly. The contacts on

a typical keyboard have around 110 ohms of resistance, so I have put small resistors in line to limit the

current. There is also a small signal diode with the cathode connected to the keyport 6529 (Signal Out) side

of the connector to stop the joystick loop-back interfering with the testing of the keyport.

http://ist.uwaterloo.ca/~schepers/diagnostic.html

Figure 5 - C16 Keyboard connector

All the other 264 machines use an 18-way FFC (Flat Flexible Cable.) Although the mechanical construction

of the keyboard for the Plus/4 and C116 is quite different, it is electrically compatible, so you can use a

Plus/4 keyboard on a C116 and vice-versa. Even the more esoteric 264 machines such as the 232, 264

and V364 all use the same compatible keyboard connection.

This connector is not easy to construct unless you have a supply of 18-way FFC cables. Others have had

success using 0.1 inch pin headers, but my concern with this approach is that the pins are much thicker

than the cable and it may stress the socket to the point where the original cable does not make a good

electrical connection. I would recommend that for casual use, the user just stick with manual testing of the

keyboard. The pins are in the same order but numbered differently on the C116 and Plus/4, as seen in

columns 6 and 7 of Table 1 - Keyboard Signals.

Signal Out Signal In Key C16 Pin Out C16 Pin In Plus/4, C116

Pin Out

Plus/4, C116

Pin In

D0 K4 F1 19 7 18 6

D1 K5 S 8 9 7 8

D2 K6 T 12 10 11 9

D3 K7 V 11 3 10 2

D4 K0 9 13 18 12 17

D5 K1 P 1 15 1 14

D6 K2 ; 16 14 15 13

D7 K3 2 6 17 5 16

Table 1 - Keyboard Signals

JOYSTICK LOOP-BACK

The design of the joystick interface on the 264 is quite different to other 8-bit Commodore computers. With

the exception of the fire buttons, all the control lines from ports 1 and 2 are all wired together and connected

to the TED’s keyboard latch. Whereas the 64’s joystick interface worked by pulling the control line to ground,

this interface works by using a buffered data line as the joysticks input. So as to not make life too easy,

Joystick 1 uses D2, and Joystick 2 uses D1 !

I toyed with several ways of building a test circuit that I felt was safe for the TED, and the one shown in

Figure 7 was the simplest that I was comfortable using. A 74HCT244 is perfect for our needs, it is a TTL

octal buffer with two active low enable lines, each enabling 4 outputs. By driving the enable lines with the

joystick select lines and holding the inputs low, it effectively emulates the joystick being pushed in every

direction at once. Again, as the contacts in the +4 Joystick have a resistance of around 110 ohms, I have

included similar valued resistors in series with the outputs. The +5V and GND are available on both ports

and can be taken from either or both. Although you can solder the wires to 8-pin mini-dins, it is very fiddly

and I would suggest finding and cutting a cable with a moulded plug. If you can find them, pld AppleTalk

network cables are great for this.

Figure 6 - Joystick Port Connections

Figure 7 - Joystick Test Circuit

OPERATION & TEST WALKTHROUGH

Install the ROM or insert the cartridge, connect the loop-back connectors, connect a monitor or correctly

tuned TV and finally the PSU, then power on the machine. Most of the screen shots that follow are either

grabbed from YAPE or VICE2.3 simply because the quality is better, but some of the ones that rely on the

loop-backs are taken with a camera pointing at my LCD TV.

LOW RAM TEST

The first sequence of tests is run as soon as the CPU hands over execution to the diagnostic ROM. The

principle is to execute a memory test of the address space of $0002-$0FFF without making any use of the

Zero Page or Stack. This is a bit tricky to do as you only have the normal A, X & Y registers available on

the CPU and you also need to have some means of communicating a meaningful status back to the user

in the case of finding a fault. The test routine achieves this by using the stack pointer (SP) as a fourth

register and the screen and border colour to communicate the status.

First is a data-bus test which writes a sequence of values to a fixed location, in this case $00FF. The values

test each data line in turn, using values 1,2,4,8 etc. Any failure to read back the same value will either

indicate a problem with the data line or with one of the DRAMs. I say either because although these tests

can give a strong indication of where the problem may lie, it is frequently impossible to be definitive.

If a problem is detected, the border will flash from 1 to 8 times, followed by a short pause. The number of

flashes indicates which data line is at fault. Additionally, the screen background colour is set to dark red, so

you can tell where in the test sequence the problem was found.

I have found the screen contents to be an invaluable source of information when diagnosing ram faults; it

is possible to identify stuck data lines or addressing faults just by looking at the screen contents. For this

reason, if the ram tests detect an error and drop into the screen flash, the screen will alternately fill with ‘@’

symbols and ‘¿’, which are values $00 and $FF respectively. It will also alternate from filling top downwards

and bottom upwards, to help identify addressing faults. The patterns you should see are shown below in

Screenshot 1 - Low RAM Flash Screens. If you see the screen filling with values other than this, or the fill

is not uniform, you may be able to determine the problem by cross referencing the observed characters

with their corresponding value. As there would be no point proceeding with any further tests if the zero page

or stack is at fault, the machine will continually repeat the flash cycle until powered off or reset.

Screenshot 1 - Low RAM Flash Screens

The second low-ram test is designed to identify addressing faults. The RAM tests implemented in the

original Commodore diagnostic ROMs were actually rather poor in that they usually wrote the same byte

across the entire address space. This makes them unable to highlight addressing related issues, such as

failed multiplexers.

The address bus testing in Diag264 tries to be a bit smarter. In early versions the test worked by writing a

pattern of bytes across the low ram area in an upwards direction, verifying the contents, then writing a

different pattern of bytes in a downwards direction. This approach had its drawbacks and was replaced by

a more elegant test which writes a bit pattern to a given memory address, and then writes the inversion of

this bit pattern to all the complementary addresses where the address differs by the inversion of only one

of the address bus lines.

In Diag264 we use a base address at $00FF, so we first write $00 to the following addresses, which are all

the complementary addresses of $00FF below $0FFF where the state of one of the lines is has been

inverted, plus $00FF itself.

Address Address Bus Flashes on failure

$007F 0000 0111 1111 8

$00BF 0000 1011 1111 7

$00DF 0000 1101 1111 6

$00EF 0000 1110 1111 5

$00F7 0000 1111 0111 4

$00FB 0000 1111 1011 3

$00FD 0000 1111 1101 2

$00FE 0000 1111 1110 1

$00FF 0000 1111 1111 base address

$01FF 0001 1111 1111 9

$02FF 0010 1111 1111 10

$04FF 0100 1111 1111 11

$08FF 1000 1111 1111 12

Table 2 - Address Bus Flash Codes

Then we write a value of $FF to $00FF, and check that all of the other addresses still contain $00. If there

is any problem decoding addresses, or there is a stuck address lines in either in the multiplexers or the

RAM’s themselves, then one or more of the addresses above would also appear to have changed. This is

a simple but powerful tool to detect addressing problems.

If faults are found, the reporting mechanism is the same as with the data-bus test, except this time the

background will be blue. The number of flashes corresponds to the address line where the problem was

identified. As before, further clues may be determined by observing the screen contents during the screen

flash cycles.

The final low-ram test is a device test, which writes a sequence of 20 test bytes across the address space

using the same algorithm as found in the C64 dead test cartridge. The bytes are:

$7F, $BF, $DF, $EF, $F7, $FB, $FD, $FE, $80, $40, $20, $10, $08, $04, $02, $01, $FF, $AA, $55, $00

In my opinion, this test is of limited value as a device test given the DRAM architecture. In a system using

8 64k x 1 bit DRAMs, writing the same value across the whole address space will result in each DRAM

being all ‘1’ or all ‘0’, which is not much use for identifying pattern sensitivities. As discussed below, the

High-RAM tests incorporate a much better pseudo random number generator which should pick these up.

The screen border will cycle through a sequence of colours as each test byte is used and, as the low-ram

area includes the screen and colour memory, you will see the contents of the screen rapidly change. The

same reporting mechanism is used if an error is found during this test, with the screen background being

black. If a failure occurs at this point, the number of screen flashes will point very strongly to the defective

DRAM. The table below shows which IC is the likely problem.

Flashes Bit Plus/4 IC C16 IC C116 IC

1 D0 U11 U5 U5

2 D1 U12 U5 U5

3 D2 U13 U5 U5

4 D3 U14 U5 U5

5 D4 U15 U6 U6

6 D5 U16 U6 U6

7 D6 U17 U6 U6

8 D7 U18 U6 U6

Once in the flash sequence, problems with particular devices will usually be visually obvious as the screen

contents cycle between $00 and $FF. For example, if on a Plus/4 U15 has failed leaving bit 4 stuck high,

instead of seeing alternating ‘@’ and ‘¿’ symbols, you would see ‘P’ (hex value $10) and ‘¿’.

Once the low RAM tests have completed, Diag264 knows that the zero-page and stack are now functioning

correctly, so the stack is initialised and the TED registers set up as they would be on normal machine start-

up. As we also know the screen RAM is functional, we can revert to a more human friendly form of

communication before moving on to the more comprehensive tests.

SCREEN LAYOUT

Now is a good time to explain the general layout of the screen, most of which is self-explanatory. Look at

the screenshot of a completed test cycle in Screenshot 2. On the top line is the title, with the version number,

and in the top right is the current display mode, being PAL or NTSC. On the bottom line, from left to right,

is the current cycle number in hexadecimal, followed by the current random number seed used in the RAM

tests, (which has little practical value other than to me), followed by my name, the year, and the build

number, in the bottom right. The build number is the timestamp of when the binary was compiled, in the

format YYYYMMDDHHMM,

Down the left side is the name of current test in progress, followed by the status of the completed tests,

which would be OK, FAIL, or SKIP. The next numeric column is the total number of failures for this test

since the tests started. If the diagnostic is left on continuous loop, this is useful for spotting intermittent

failures. To the right is information specific to the test, which is covered in the detailed explanations below.

As each test runs, the cursor will flash to the immediate right of the test name. The area below the list of

tests may contain various other additional information, depending on the current test.

Screenshot 2 - Screen Layout

HIGH RAM TEST

The high RAM test performs a similar sequence of tests to the low RAM tests, but on the memory area from

$1000 to the upper end of installed RAM, which could be $3FFF, $7FFF or $FFFF, depending on the model

under test. The test first identifies the amount of installed RAM by writing a sequence of bytes to $30 and

checking to see if they are mirrored at $4030 or $8030. The amount of installed memory is displayed when

the test completes.

On a 64K system we also need to test the RAM that resides beneath the ROM’s. To do this, the high RAM

code is copied to $0200 and the RAM made visible to the CPU by writing to the TED pseudo register at

$FF3F. As it’s not possible to access the RAM beneath the I/O areas, memory is then tested up to $FCFF

and then from $FF20 to $FFFF, skipping locations $FF3E and $FF3F.

In order to speed the tests up, the screen is blanked, allowing us to make use of the clock doubling feature

of the TED architecture. On a 64K system they will take approximately 20 seconds to complete and the

screen colour will cycle as the test values change.

Two types of error can be reported, either an addressing or a device error. In both instances, as shown in

Screenshot 3 and 4, the address where the error occurred will be displayed, as well as an exclusive or

between the written and expected value. The addressing error occurs when performing the same type of

address testing as described in the low RAM tests, only this time testing the complete address range.

A device error occurs when the address tests have completed successfully but then a value read does not

match what was written. As well as the byte pattern tests as described in the low RAM tests, the device test

also writes a sequence of pseudo random numbers across the address space to try and catch subtle pattern

memory issues that otherwise would not show up. If Diag264 is left running, each iteration of the high RAM

test will start with a new seed value, ensuring the maximum possible exercising of the RAM.

Screenshot 3 - RAM Address Failure

Screenshot 4 – RAM Device Failure

ROM TESTS

The ROM tests perform checksums on any installed ROMS, including those in the Function High and Low

sockets. Each ROM is check summed three times using a cyclic redundancy checksum. If an inconsistent

value is read, it is assumed no rom is present and the message ‘SKIP’ is displayed. If SKIP is seen when

a ROM is known to be present, this should be considered a failure. If the checksum of the ROM is

recognised, the part number and revision is displayed. Any other computed checksum will result in a ‘FAIL’.

An example can be seen in .

The checksum routine is copied to $0200 in RAM to allow the different ROM’s to be switched in. The Low

ROM area is summed from $8000 - $BFFF and High ROM from $C000 - $FFFF, with the exception of

$FD00 – $FF1F for the I/O area. For high ROMs other than the kernal, the area from $FC00 - $FCFF is

also skipped as the 264 architecture always exposes the default kernal in this area to allow the bank

switching and interrupt routines to always be visible.

One observation I made while developing this is that that when reading the two bytes at $FF3E and $FF3F,

the contents of the ROM are visible. These are not check summed because this behaviour is not

consistently modelled in emulators and the only official kernal to have values other than $00 in these

locations is the NTSC R5 kernal ($FF and $FF.)

All known official ROM’s are recognised, along with known beta versions, and those with modified

Hungarian characters sets. If it’s identified, it will display the text in the table below, which in the case of

officially released ROM’s, will be the Commodore part number.

Table 3 - Diag264 recognised ROM's

Description Checksum Diag 264 Display

Basic ROM Beta 0119 (19th January 1984) $F885 BETA 0119

Basic ROM Beta 0203 (3rd February 1984) $23D5 BETA 0203

Basic ROM Beta 0217 (17th February 1984) $5031 BETA 0217

Basic ROM Release version $EC81 318006-01

Kernal ROM Beta 0119 (19th January 1984) $1D45 BETA 0119

Kernal ROM Beta 0203 (3rd February 1984) $0355 BETA 0203

Kernal ROM Beta 0217 (17th February 1984) $D17A BETA 0217

Kernal ROM Beta 0316 (16th March 1984) $424E BETA 0316

PAL kernal Revision 1 (EPROM only) $33F0 318004-01

PAL kernal Revision 3 $1FC9 318004-03

PAL kernal Revision 4 $010D 318004-04

PAL kernal Revision 5 $EEA6 318004-05

NTSC kernal Revision 4 $5FAD 318005-04

NTSC kernal Revision 5 $5CD4 318005-05

Hungarian PAL kernal Revision 1 $CAE8 318030-01

Hungarian PAL kernal Revision 2 $F3DA 318030-02

6510 CPU replacement, based on PAL Rev 5 $E02B 6510 V1

3+1 Function Low $2558 318053-01

3+1 Function High $00A5 318054-01

Micro Illustrator $36C2 MICRO ILLUS.

Diag264 Varies DIAG264

KEYBOARD TEST

The keyboard test checks two aspects of the keyboard operation, the 6529 single port interface and the

keyboard latch on the TED chip. It does not perform an exhaustive check on the keyboard matrix, as this

can be done in the advanced keyboard tests discussed later. The test can be carried out manually or by

using the keyboard loop-back plugs for unattended testing.

The test first checks to see if the shift-lock is held down. If so, the remainder of this test, as well as the

joystick test, is skipped, avoiding unnecessary delays waiting for keys that will never be pressed if the loop-

back plugs are not in place. If not, the 6529 keyport is tested to see if it can hold a value by writing to the

port and comparing with the values that are read back. If any problems are detected with the keyport, the

message “6529 KEYPORT BAD” is shown when the keyboard test completes.

The keyboard port is then cleared (all bits set high) and the TED keyboard latch sampled. If the latch

contains anything other than $FF, this indicates a possible keyboard problem. At this point a string of 8

keys to be pressed is displayed on the screen in black, as seen in Screenshot 5.

Screenshot 5 – ROM Fail and Keyboard Test

The test will then pull each of the lines low on the keyport in turn, keeping each one low for approximately

2 seconds. The leftmost black key is the one that should be pressed if a keyboard is attached and also

corresponds to the loop-backs on the keyboard connector if that is being used. The keys and loop-backs

have been chosen so that each line on the keyport pulls a different bit of the TED latch low. If the

corresponding bit of the latch does not go low within two seconds, that port/latch combination is deemed to

have failed, the key is colour red, and the test moves on to the next key.

On success, the key will be coloured green and an additional test will be done by clearing the port and re-

reading the latch register after a short delay. If the same value cannot be read from the latch it indicates a

problem with the latch being able to hold the value correctly, a common partial failure of the TED. In this

instance the message “TED LATCH BAD” will be displayed, but only after the joystick test has completed!

You can see in Screenshot 5 that the first five keys were successfully detected, 6 and 7 were not, and the

final key (2) is currently being waited for. If a loop-back is being used the test will complete very quickly if

successful.

JOYSTICK TEST

The joystick test operates much in the same way as the keyboard test, except that instead of a list of keys,

a list of possible directions for the two joystick ports is displayed. They will initially be displayed in black

text, which turn green as each direction is detected. As it’s not always easy to be precise if using a joystick

to manually provide the input and as we do not have to test an output port, the test does not require the

joystick to be actuated in any particular order. The test will be flagged as complete once every direction and

fire button has been detected. If directions are still outstanding after approximately 15 seconds, the test will

be flagged as a fail.

With a suitable loop-back connected, the test will complete very quickly. Without a loop-back, the only way

to get this to successfully complete is to have a joystick connected to both of the ports. If you suspect one

of the joystick port has issues but you only have a single joystick, you should start the test with the joystick

on port one, determine that it works or not, then power off the machine and swap the joystick to the other

port. Although there is some electronic protection on the joystick ports, you should never swap joysticks

over with the power on.

As with the keyboard test, the TED latch is also tested to determine that it can hold a value. If a latch

problem is detected in either the joystick test or the preceding keyboard test, the message “TED LATCH

BAD” will appear after the test completes. See Screenshot 6.

If a joystick loop-back is not available, activating the shift lock before the test starts will cause the joystick

test to be skipped.

Screenshot 6 - Failed TED Latch

CASSETTE TEST

The cassette interface on the 264 series is implemented using P4, P1, and P3 of the 7501/8501 CPU for

read, write, and motor control respectively. On a Plus/4 the cassette sense is implemented by port bit P2

on the user port 6529. There is no 6529 on the C16, C116 or C232 but the equivalent cassette sense

operation is mirrored using a tri-state buffer to drive D2 to the state of the sense line when reading from

$FD10.

The Plus/4 motherboard has two jumpers, J8 & J9, which theoretically also allow the cassette sense to be

implemented by P7 on the CPU, but on every Plus/4 board I have seen, it has only ever been implemented

by P2 of the 6529. Also, there is nothing in the kernal that would suggest that this was ever supported in

software, so Diag264 will not check for sense operation on the CPU.

If the cassette test fails at any point, a status byte will be shown to the right of the cycle count which will

indicate during which step of the test it failed. The steps in the test are as follows:

01. Start with write low (P1) and check read (P4) is high.

02. Hold write high and check read is low.

03. Hold write low and check read is high again.

04. With the motor off, check if P7 in unaffected

05. Check P2 of 6529 at $FD10 is low

06. Turn cassette motor on (P3 low), and check P3 remains low

07. Check P2 of 6529 at $FD10 is now high.

All of the CPU output ports are inverted by a 7406 at U6 on a Plus/4 and U9 on a C16/C116. Assuming the

loop-back is installed correctly, any failure in steps 1-6 strongly indicates that either the CPU or the 7406 is

faulty. If a failure occurs at step 7, it implies the cassette sense circuit is at fault or, more likely, that the

cassette motor circuitry is at fault.

Further diagnosis of the CPU’s I/O ports can be done using the Advanced Port Testing feature described

later.

SERIAL TEST

The IEC serial port is internally looped back, with the exception of the ATN line, which is looped back to

CLK in in the connector. As with the cassette test, a status byte will be shown to the right of the cycle count

which will indicate exactly which step of the test failed. The steps in the test are as follows:

01. Start with DATA out (P0), CLK out (P1) and ATN (P2) low and check DATA in (P7) and CLK in (P6)

are high.

02. Hold DATA out high and check DATA in is low.

03. Hold DATA out low and check DATA in is high again.

04. Hold CLK out high and check CLK in is low.

05. Hold CLK out low and check CLK in is high again.

06. Hold ATN out high and check CLK in is low.

07. Hold ATN out low and check CLK in is high again.

The serial port shares much of the circuitry with the cassette, so any problems with this test strongly indicate

an issue with the CPU ports or the 7406 inverter.

USER PORT TEST

The user port on the Plus/4 contains two interfaces, the 6529 single port interface and the 6551 ACIA

RS232 interface, which are only normally present on the Plus/4. This test exercises both to determine

correct operation, starting with the 6529 port.

After setting all port bits high (inactive), the port is read over a period of time to ensure the value is stable.

This is a best endeavour to ensure the port is present on the machine being tested, as the data lines usually

float with random values if not. The test will say ‘SKIP’ if it can’t be found. If you know the port to be present,

this should be read as a fail.

The individual data lines of the port are activated in sequence to ensure they pull the corresponding looped

back data line low (see Figure 4) if not, the test will fail. In this instance, the status byte will contain the

hexadecimal representation of the failed port bits.

RS232 PORT TEST

The ACIA is rather more complex to test as the communication is interrupt driven. First an interrupt handler

is set up in the low memory error to catch the communication related interrupts and then the port is

configured for 8-bit words, 1 stop bit, 2400 baud. If this value cannot be read back from the control register,

the ACIA port is assumed not to be present and skipped. If any of the following steps fail, the step will be

indicated in the status byte.

01. RTS and DTR are cleared. DSR is checked to see if it is set.

02. DCD is checked to see if it is set.

03. Interrupts are enabled and DTR is set ready. After a short delay, check that an interrupt has

occurred and that DCD has been cleared.

04. RTS is set ready. After a short delay, check that an interrupt has occurred and that DSR has been

cleared.

Now a sequence of 192 test bytes is set up and transmitted using the ACIA. All the communication is

interrupt based, interrupts being generated when the receive register (all 1 byte of it) is full and when the

send register is empty. The location for the received message is set up to be about ¾ of the way down the

screen, so if the message is received correctly, you should see something like Screenshot 7.

Screenshot 7 - RS232 Test

The test waits approximately 2.5 seconds for the message to be received before checking the following

conditions have been met.

05. Check that ‘bytes to send’ is now zero.

06. Check that ‘bytes received’ is now 192.

07. Check no overflow errors occurred.

08. Check no framing errors occurred.

09. Check no parity errors occurred.

10. Check the contents of the receive buffer match the send buffer

INTERRUPT & 2X CLOCK TESTS

The interrupt tests checks that the interrupt sources on the TED chip are all functioning correctly. The TED

has 4 usable interrupt sources; 3 timers and the raster interrupt. These are initialised to a specific pre-

condition and then allowed to run for approximately half a second (525353 cycles) before a count is made

of the number of interrupts that occurred. If this number falls outside of the boundaries shown below, the

TED may be at fault.

A number of factors can affect this number such as running the Diag264 from a cartridge or kernal ROM

(the latter bypasses the normal interrupt vectors,) the PAL or NTSC television standard (different number

of lines to render,) the kernal version, and the presence of an ACIA on the system (causes more interrupts),

and even factors caused by the compilation of Diag264 which result in branches falling across page

boundaries. Theoretically I should be able to precisely know how many interrupts should have occurred, as

the system should be deterministic in nature, but I’ve never been able to completely achieve this.

The test is performed twice, the first time with the TED forced into single clock mode and the second time

with the screen blanked, thus running at twice the speed. The interrupt sources and the boundaries currently

defined for both single and double clock operation are seen in Table 4.

Table 4 - Interrupt Sources and Boundaries

 Single Clock Double Clock

Interrupt Source Lower Bound Upper

Bound

Lower

Bound

Upper Bound

Timer 1 with a reload value of $2000 $53 $57 $26 $27

Timer 2, initialised with $0100 $0B $0C $05 $06

Timer 3, initialised with $FF00 $0A $0B $04 $04

Raster Interrupts at scan line 204 $26 $30 $12 $16

Each count will be displayed as it completes; in green if within the boundaries defined above, otherwise

red. An example of the output for a successfully completed test is shown in Screenshot 2, earlier in the

document.

TED REGISTER TESTS

The final sequence of tests attempts to test as many of the TED registers as can reasonably be achieved

in a short space of time. Some of the registers have already been tested prior to this section, for example

the screen blanking, clock doubling and timers. For most of the remaining registers it is not possible for the

software to determine an ‘OK’ or ‘FAIL’ state so it relies on the observer to make that decision after

comparing the results to this document.

A sequence of three screens is displayed, and the observer should be on the lookout for deviations from

what is described and shown below. A musical scale is played for the duration of each screen using one of

the three voices for each of the screens.

COLOUR PALETTE

This screen plays a scale on voice 1 and displays a cycling colour palette. It doesn’t really do much more

than show off the TED’s colour palette.

Screenshot 8 - Colour Palette

TED GRAPHIC MODES

The second screen has much more going on and is designed to show the available graphics modes on a

single screen. You should check carefully that what is shown on the screen matches Screenshot 9 - TED

Graphics Modes. The modes displayed are shown alongside the screenshot.

The top three sections show the three different text modes. Each section shows four rows of characters

with tile values of 0 – 39, 64 – 103, 128 – 167 and 192 – 231 respectively. The attribute (colour) values are

set to the same value.

The first, with the dark blue border is the default Hi-Res text mode. Although not seen in the static picture,

the third and fourth rows will be flashing. The second, with the black background, shows multicolour mode,

which is not really suited to the inbuilt character set but should nevertheless be noticeable on characters 8

– 15 and 24 – 31. The third text mode, with the yellow background, shows the rarely used extended

background mode, where the first 64 characters are rendered on a different coloured background

depending on the value of bits 6 and 7 of the tile value.

The bottom two sections highlight the bitmap graphics modes, Hi-Res and multicolour, with respective

green and red borders. The top should show a grid of white lines and the bottom a grid of alternating vertical

blue and red lines with green horizontal lines.

Screenshot 9 - TED Graphics Modes

SMOOTH SCROLL

The final TED register test demonstrates the smooth scrolling and the 24 row, 38 column modes. The status

screen is moved in a sinusoidal wave. There should be no visible artefacts on any of the borders or any

shearing of the display. The white noise generator should be heard during this test.

Screenshot 10 – Smooth Scroll

EXTENDED KEYBOARD TEST

When the main tests complete, there will be a pause of a few seconds before the cycle starts again. During

this time you have the option to select from two advanced tests, namely pressing ‘K’ for the advanced

keyboard tests, and ‘P’ for the advanced ports testing. If the keyboard loop-back plug is detected, this option

will not appear, as clearly the keyboard is unavailable.

The advanced keyboard tests were implemented to identify keyboard reliability issues and to identify

patterns which may cause complete rows or columns of keys to fail, which may in turn indicate that there is

a problem with the keyboard output port or TED latch. Fundamental problems should be detected by the

man keyboard test, but this allows for an additional level of investigation.

Displayed you will see a screen as shown in Screenshot 11 – Advanced Keyboard Testing, which shows

the keyboard not as it is physically laid out, but according to the rows and columns of the 6529 keyboard

port and TED latch. Initially, all keys will be black, showing that the key has not yet been pressed. While

each key is pressed, it will highlight in a reversed green colour, which will revert to non-inverted, but still

green, once the key is released.

Using this, you can go through all keys ensuring that they are responding correctly, including when used in

conjunction with either shift, shift-lock, or the Commodore key.

Screenshot 11 – Advanced Keyboard Testing

To exit the keyboard test, either press ‘Control’ and ‘Q’, or wait for the hexadecimal countdown timer to

reach 00, after which the main test cycle will restart.

EXTENDED PORT TESTS

The extended port testing functionality was added to enable more detailed investigation of the I/O ports on

the CPU and, if fitted, the 6529 on the user port. Having issues with the ports can cause problems with the

cassette deck and the IEC port for disk drives and printers. As well as the CPU itself, some of the failure

points include the 7406 hex inverter and the diodes that protect the I/O lines. During normal operation, it

can be quite difficult to investigate these without an oscilloscope as the states change very quickly, but this

tool allows you to maintain the ports in a steady state and toggle them as required.

After the pressing ‘P’, you will see an image similar to the one shown in Screenshot 12 – Extended Ports

Testing . At the top of the screen is the CPU with the CPU DDR (Data Direction Register) at memory location

$00, followed by the write value to the CPU port register itself at location $01, and finally the value read

back from the port register. All the values are shown as a hexadecimal value, followed by a binary

representation of the register. For the DDR these are represented by ‘I’ and ‘O’ for Input and Output

respectively. For the written value, port bits set to input by the respective value in the DDR are displayed

as a dash ‘-‘, and ports set to output displayed as a solid block for a high value, and a dot ‘.’ for a low value.

For the read value, the same scheme applies, again being shown as a solid block for a high value and a

dot for a low value. To the right is a summary of the use of the CPU port on 264 computers.

Below the CPU is the 6529 SPI (Single Port Interface) at location $FD10 which is exposed on the user port

of the Plus/4. The 6529 does not have a corresponding DDR, so just the write and read values are shown.

To the right is shown the only standard use of this port, where P2 is used for cassette sense. On a C16,

the 6529 is not present, but the ability to read P2 is still implemented using some basic TTL logic.

Screenshot 12 – Extended Ports Testing

Operation is quite simple, in that the ‘CTRL’ key is used to rotate between the CPU DDR, the CPU port

write value and the 6529 write value. The selected port is highlighted in reversed green text. Once selected

the individual register bits are manipulated using the keys ‘0’ to ‘7’. On the DDR, these will toggle the port

bits between input and output, while on the write values this will toggle between high and low outputs.

On the CPU port, any bits set as input via the DDR cannot be changed. The default value for the DDR on

264 machine is $0F, meaning port bits 0 to 3 are outputs and 4 to 7 are inputs. There should not normally

be any reason to change the DDR from its default value, as once set by the kernel, it is never changes

during the normal operation of the machine and neither does any other software change it to my knowledge.

If you have a cassette deck attached, then pressing play, fast forward, or rewind, should cause the cassette

sense bit to toggle. Toggling P3 on the CPU output will cause the motor to start and stop. With the motor

enabled, playing a tape with a program on should cause P4 to flicker rapidly.

As some of the CPU ports are internally connected, then without the loop-back plugs installed toggling P0

should affect the input on P7, and likewise P1 will affect P6.

If you have the loop-back plugs installed, then P3 (motor) should toggle the sense line, and P1 (cassette

write) should toggle P4 (cassette read.)

THE END

At the end of the test, the display will pause for a few seconds before looping round and continuing from

the High RAM test again.

DIAG264 VERSION HISTORY

0.15A - added colour to print_msg

 - made sure that keyport and latch messages are always displayed

 - fixed long standing bug with timer 3 checks

0.20A - re-write of rom check routine

0.21A - updated ZP usage

0.22A - tidied low-ram test, integrated ted mode screen

0.4A - integrated smooth scroll

 - added databus and address bus tests

 - added 128 char definitions

0.5A - added better address bus tests and for high ram

0.6A - added HW cursor

0.7A - tolerance checks on interrupt counts

0.1B - High RAM location reporting

 - fixed a raster synch issue with the interrupt counts which should improve count stability

 - implemented NTSC compatible tests...

0.11B - allowed skipping of KB test even if failures have occured

0.12B - improved latch testing on KB test

0.13B - fixed keyport bug

 - fixed setting of cassette motor if sense is on cpu-p7 so it doesn't break serial test

 - fixed location of $FD10-D2 message

0.2B - first Beta release!

 - relaxed interrupt tolerances based on running on NTSC machine

0.3b - much improved address bus test

0.5b - fixed databus test to correctly mask bits

0.6b - Autodetect PAL/NTSC if running from cartridge (F33F - #$08 for PAL, #$48 for NTSC)

 - Always allow KB skip

0.7b - Fixed NTSC/PAL toggle. 'P' forces PAL and 'N' forces NTSC

 - Avoid conflict if dongle installed

0.8 - Updated version & 2016

 - remove cpu-p7 cassette checks, messages etc

 - fixed raster detection in colour_sound_test

 - simplified colour sound test

0.9 - Updated version & 2018

 - ROM checksums now CRC-16

 - use a single smooth scroll dataset and manipulate bits

 - various minor code optimisations

 - Doesn't trash the screen when check-summing function ROM's

 - stabilised raster splits

 - added various beta kernals

0.91 - added extended KB test

 - fixed small bug in forcing NTSC mode

 - cart version now works in any low-rom position, including replacing func-low

 - cart_lo renamed to low_rom

 - fixed bug caused by small_delay sitting across a page boundary causing interrupt…

- …timing discrepancies

 - align interrupt handler to page boundary, again to avoid timing discrepancies

 - added pseudo random number testing to RAM

0.92 - added advanced port testing

 - added checksum for Andy Challis' 6510 replacement kernal

 - reset interrupt sources at end of TED interrupt tests

0.93 - beta release

 - changed keys to toggle ports to 0->7 instead of 1->8

 - Added some information to the EPT tests to describe the use of the ports

 - reset the ports at the beginning of EPT

 - show Diag264 and not FAIL if running from low-ROM socket

0.94 - fixed bug that always sent the tests into the port testing if the KB loop-back plug…

- …was installed

- added check to detect KB dongle and if present don't show messages for advanced tests

